This report evaluates three routes for the production of liquid hydrocarbons from synthesis gas (syngas): Fischer-Tropsch (FT) synthesis with advanced design Synthol fluidized-bed reactors (as practiced by Sasol and Mossgas Ltd. in South Africa), the Shell middle distillate synthesis (SMDS) process (as applied in Malaysia), and Mobil’s methanol-to-gasoline (MTG) process in its fluidized-bed version. Mobil carried out and completed development of its fluidized-bed MTG process shortly after the implementation in New Zealand of its earlier (and economically inferior) fixed-bed process. However, the fluidized-bed MTG process has not yet been commercialized.

We present a technical review that primarily focuses on the three routes evaluated in the report. The review includes an analysis of major new developments in the areas of catalysts and reactor designs.

Our economic evaluations indicate that at the current world prices of crude oil (and those for the individual fractions), none of the three processes offers an attractive prospect for the utilization of remote natural gas.

This report will be useful to both chemical and energy-based companies (or equivalent government organizations thereof in various countries) that have a long-term interest in the potential conversion of natural gas to easily transported liquid hydrocarbons and/or to derivative chemicals.
CONTENTS (Concluded)

6 METHANOL TO GASOLINE BY MOBIL’S FLUIDIZED-BED REACTOR PROCESS 6-1
PROCESS DESCRIPTION ... 6-2
Section 100—Methanol Conversion ... 6-4
Section 200—Product Separation ... 6-4
Section 300—HF Alkylation .. 6-5
Steam Distribution .. 6-5
Gasoline Product Quality ... 6-5
PROCESS DISCUSSION ... 6-16
COST ESTIMATES .. 6-17

APPENDIXES

APATENT SUMMARY TABLE
BDESIGN AND COST BASES
C CITED REFERENCES
D PATENT REFERENCES BY COMPANY
EPROCESS FLOW DIAGRAMS
FIGURES

4.1 Gasoline from Natural Gas by FT Synthesis .. E-3
4.2 Gasoline from Natural Gas by FT Synthesis
Steam Distribution Diagram ... 4-3
4.3 Gasoline from Natural Gas by FT Synthesis
Gasoline Product Value as a Function of Natural Gas Price and Production Capacity 4-26
5.1 Gasoline and Middle Distillates from Natural Gas by SMDS ... E-5
6.1 MTG by the Fluidized-Bed Reactor Process .. E-7
6.2 MTG by the Fluidized-Bed Reactor Process
Steam Distribution Diagram ... 6-3
6.2 MTG by the Fluidized-Bed Reactor Process
Product Value as a Function of Methanol Price and Production Capacity 6-24
TABLES

2.1 Liquid Hydrocarbons from Syngas: Comparative Production Costs .. 2-5
3.1 Liquid Hydrocarbons from Syngas Patent Summary ... A-3
3.2 Typical Product Compositions from Various Sasol Reactor Systems .. 3-3
4.1 Gasoline from Natural Gas by FT Synthesis Design Bases and Assumptions 4-7
4.2 Gasoline from Natural Gas by FT Synthesis Major Equipment ... 4-9
4.3 Gasoline from Natural Gas by FT Synthesis Stream Flows ... 4-12
4.4 Gasoline from Natural Gas by FT Synthesis Utilities Summary .. 4-15
4.5 Gasoline from Natural Gas by FT Synthesis Total Capital Investment ... 4-20
4.6 Gasoline from Natural Gas by FT Synthesis Capital Investment by Section ... 4-21
4.7 Gasoline from Natural Gas by FT Synthesis Production Costs .. 4-23
4.8 Gasoline from Natural Gas by FT Synthesis Direct Costs by Section .. 4-25
5.1 Gasoline and Middle Distillates from Natural Gas by SMDS Design Bases and Assumptions 5-5
5.2 Gasoline and Middle Distillates from Natural Gas by SMDS Major Equipment 5-7
5.3 Gasoline and Middle Distillates from Natural Gas by SMDS Stream Flows ... 5-9
5.4 Gasoline and Middle Distillates from Natural Gas by SMDS Utilities Summary 5-13
5.5 Gasoline and Middle Distillates from Natural Gas by SMDS Total Capital Investment 5-17
5.6 Gasoline and Middle Distillates from Natural Gas by SMDS Capital Investment by Section 5-18
5.7 Gasoline and Middle Distillates from Natural Gas by SMDS Production Costs 5-19
5.8 Gasoline and Middle Distillates from Natural Gas by SMDS Direct Costs by Section 5-21
6.1 MTG by the Fluidized-Bed Reactor Process Design Bases and Assumptions ... 6-7
6.2 MTG by the Fluidized-Bed Reactor Process Major Equipment .. 6-9
TABLES (Concluded)

6.3 MTG by the Fluidized-Bed Reactor Process
 Stream Flows ... 6-11

6.4 MTG by the Fluidized-Bed Reactor Process
 Utilities Summary ... 6-15

6.5 MTG by the Fluidized-Bed Reactor Process
 Total Capital Investment .. 6-19

6.6 MTG by the Fluidized-Bed Reactor Process
 Capital Investment by Section .. 6-20

6.7 MTG by the Fluidized-Bed Reactor Process
 Production Costs .. 6-21

6.8 MTG by the Fluidized-Bed Reactor Process
 Direct Costs by Section .. 6-23