Abstract

Process Economics Program Report 190B

PERVAPORATION

(March 1994)

Advances in ongoing membrane research and technology developments in membrane systems have led to the commercial development of several applications for the use of pervaporation membranes in the chemical manufacturing and wastewater treatment industries. We have identified membrane materials and modules that have the commercial use potential, and have listed major suppliers of both commercial and demonstration pervaporation systems. In addition, we investigated the economic merits of employing pervaporation as a process for separation of selected aqueous-organic and organic-organic liquid mixtures. Aqueous-organic mixture separations include the separation of reduced concentrations of water from organic process streams and removal of low concentrations of dissolved organic compounds from aqueous wastewater streams.

The economic feasibility of dewatering solvents by evaluating the separation of water from ethanol is demonstrated, and results are compared with estimated capital and operating costs for conventional azeotropic distillation operations. We also have developed economics for recovering volatile organic compounds such as trichloroethylene from an aqueous wastewater, and have reviewed the latest research developments in organic-organic mixture separations.

Finally, pervaporation system sales and market growth rates are reported for each major industrialized world region, along with an explanation of major market driving forces and a list of developmental pervaporation membrane applications for solvent dehydration. Organic-organic separation may be the most significant long-term potential application for pervaporation, but considerable membrane material and process development remains to be done. In all the above applications, the most successful processes require integration with existing conventional separation unit operations.
CONTENTS

1 INTRODUCTION 1-1

2 SUMMARY 2-1
 MARKETS 2-1
 TECHNOLOGY 2-5
 ECONOMICS 2-5
 Ethanol Dehydration 2-6
 Removal of 1,1,2-Trichloroethylene from Wastewater 2-6

3 INDUSTRY STATUS 3-1
 PERVAPORATION SYSTEMS APPLICATIONS 3-1
 Dehydration of Aqueous/Organic Mixtures 3-1
 Removal of Organics from Aqueous Waste Streams 3-2
 Organic/Organic Separations 3-3
 PERVAPORATION SYSTEMS SALES 3-3
 United States 3-3
 Western Europe 3-4
 Japan 3-4
 PERVAPORATION SYSTEMS PRODUCERS 3-4

4 PERVAPORATION SEPARATION TECHNOLOGY 4-1
 POLYMERIC MEMBRANE MATERIALS 4-1
 Polymer Types 4-2
 Glassy Polymers 4-2
 Elastomers 4-2
 Copolymers 4-3
 Membrane Morphology 4-5
 MEMBRANE PREPARATION PROCESSES 4-5
 Homogeneous Membranes 4-5
 Casting 4-5
 Extrusion 4-7
 Asymmetric Membranes 4-7
 Phase Inversion 4-7
 Loeb-Sourirajan Process 4-7
CONTENTS (Continued)

4 PERVAPORATION SEPARATION TECHNOLOGY (Concluded)

MEMBRANE PREPARATION PROCESSES (Concluded)

Composite Membranes 4-7
Solution Casting 4-7
Interfacial Polymerization 4-8

MEMBRANE MODULES 4-9
Plate and Frame Modules 4-9
Spiral Wound Modules 4-9
Hollow Fiber Modules 4-13
Module Type Comparisons 4-13

SYSTEM CONFIGURATIONS 4-15
Once Through Processes 4-15
Recycle Processes 4-18

SYSTEMS DESIGN 4-18
Module Design Approaches 4-19
Production Capacity 4-19
Concentration Polarization 4-19
Pressure 4-20
Membrane Thickness 4-20
Feed Temperature 4-20

FUTURE RESEARCH EMPHASES 4-21

5 DEHYDRATION OF AQUEOUS/ORGANIC MIXTURES 5-1

REVIEW OF PROCESSES 5-1

Alternative Separation Techniques 5-1
Azeotropic Distillation 5-1
Vapor Permeation 5-2
Pervaporation 5-2

Polymeric Membrane Materials 5-4
Membrane Types 5-4
Organics Dehydration 5-5
Azeotropic Separation Alternatives 5-5
Ethanol/Water 5-5
Isopropanol/Water 5-9
CONTENTS (Continued)

5 DEHYDRATION OF AQUEOUS/ORGANIC MIXTURES (Concluded)

REVIEW OF PROCESSES (Concluded)

- Organics Dehydration (Concluded)
 - Pure Organic Product Concentration
 - Methanol
 - Ethylene Dichloride
 - Debottlenecking
 - Other Dehydration Process Applications

- Membrane Performance Developments

ETHANOL DEHYDRATION BY PERVERAPORATION

- Process Description
- Process Discussion
- Cost Estimates
 - Capital Costs
 - Production Costs

COMPARISON WITH ETHANOL DEHYDRATION BY AZEOTROPIC DISTILLATION

- Cost Estimates
 - Capital Costs
 - Production Costs

6 REMOVAL AND RECOVERY OF ORGANICS FROM AQUEOUS WASTE STREAMS

REVIEW OF PROCESSES

- Polymeric Membrane Materials
- Potential Pervaporation Membrane Applications
 - Chemical Plant Wastewater
 - Pulp Mill Wastewater
 - Coal Liquefaction/Gasification Wastewater
- Other Applications

- Alternative Separation Techniques
 - Carbon Adsorption
 - Resin Adsorption
 - Air Stripping
 - Steam Stripping
 - Biological Treatment
6 REMOVAL AND RECOVERY OF ORGANICS FROM AQUEOUS WASTE STREAMS (Concluded)

REVIEW OF PROCESSES (Concluded)

Alternative Separation Techniques (Concluded)
- Solvent Extraction 6-8
- Incineration 6-8

Applications of Membrane Separation Technology 6-9
- System Parameters 6-10
 - Selectivity 6-10
 - Degree of Removal 6-10
 - Feed Concentration 6-10
- Component Separations 6-11
 - Removal of Phenol from Wastewater 6-11
 - Removal of 1,1,2-Trichloroethylene from Wastewater 6-12
- Developmental Pervaporation Processes 6-12
 - Perstraction 6-12
 - Pervaporation/Reverse Osmosis Hybrid Systems 6-12

REMOVAL OF 1,1,2-TRICHLOROETHANE BY PERVAPORATION 6-15
- Process Description 6-15
- Process Discussion 6-21
- Cost Estimates
 - Capital Costs 6-21
 - Production Costs 6-22
- Conclusion 6-22

7 ORGANIC/ORGANIC SEPARATIONS 7-1

REVIEW OF PROCESSES 7-1

Polymeric Membrane Materials 7-1
Separation Applications 7-3
- Separation of Aromatics from Other Hydrocarbons 7-3
- Separation of Methanol from Isobutene/MTBE Mixture 7-4
- Other Difficult Organic Liquid Separations 7-7
 - Benzene/Cyclohexane 7-7
 - Cyclohexanol/Cyclohexanone 7-7

APPENDIX A: PATENT SUMMARY TABLES A-1

APPENDIX B: PERVAPORATION B-1

BASIC SEPARATION PRINCIPLES
ILLUSTRATIONS

2.1 Procedure for Planning a Pervaporation Facility 2-4
4.1 Pervaporation Membrane Morphology 4-6
4.2A Pervaporation Plate-and-Frame Membrane Modules 4-10
4.2B Pervaporation Circular Plate-and-Frame Membrane Module 4-11
4.2C Pervaporation Spiral-Wound Membrane Module 4-12
4.2D Pervaporation Hollow Fiber Modules 4-14
4.3A Pervaporation Pass-Through Process Configurations 4-16
4.3B Pervaporation Recycle Process Configurations 4-17
5.1 Pervaporation Curve of PVA Membranes and Vapor/Liquid Equilibrium for Ethanol/Water Mixtures 5-6
5.2 Dehydration of Aqueous/Organic Mixtures 5-7
5.3 Dehydration of Aqueous/Organic Mixtures Hydrophilic Ion Exchange Membranes 5-13
5.4 Dehydration of Aqueous/Organic Mixtures Hydrophilic/Hydrophobic Membranes 5-15
5.5 Bioethanol Production Operations 5-17
5.6 Membrane Systems in Bioethanol Production 5-18
5.7 Ethanol Dehydration by Pervaporation 5-19
5.8 Pervaporation Vacuum Separation Module for Recovery of Ethanol From Aqueous Solution 5-20
5.9 Ethanol Dehydration by Azeotropic Distillation 5-32
5.10 Ethanol Dehydration Investment Comparison 5-36
ILLUSTRATIONS (Concluded)

5.11 Ethanol Dehydration
Dehydration Cost 5-37

5.12 Ethanol Dehydration
Dehydration Cost 5-38

6.1 Technologies for Recovering or Removing VOC’s from Wastewater
Range of Applicability for Various Processes 6-6

6.2 Conceptual Hybrid Separation Process Design 6-14

6.3 Removal of 1,1,2-Trichloroethane (TCE) from Wastewater 6-16

7.1 Standard MTBE Process
Methanol Recovery by Waterwash 7-5

7.2 Hybrid MTBE Process
Pervaporation/Distillation Methanol Recovery 7-6

7.3 Integrated Pervaporation/Rectification Process
for Azeotropic Separation 7-8
TABLES

2.1 Pervaporation Membrane Systems
 Sales and Forecast Growth 2-1

2.2 Installed Commercial Scale Pervaporation Systems 2-2

2.3 Major Pervaporation Membrane Separation Systems Suppliers 2-3

2.4 Ethanol Dehydration
 Process Economics Comparison 2-6

2.5 Removal of 1,1,2-Trichloroethylene from Wastewater
 Summary of Estimated Costs 2-7

3.1 Developmental Pervaporation Applications for Solvent Dehydration 3-2

3.2 Installed GFT Pervaporation Units 3-5

3.3 Industrial Pervaporation System Suppliers 3-6

4.1 Glassy Polymer Pervaporation Membrane Materials 4-2

4.2 Elastomeric Polymer Pervaporation Membrane Materials 4-3

4.3 Copolymer Pervaporation Membrane Materials 4-4

4.4 Polymer Blend Pervaporation Membrane Materials 4-4

4.5 Membrane Module Features 4-13

5.1 Dehydration of Aqueous/Organic Mixtures
 Water Solutions/Azeotropes Subject to Separation by Pervaporation 5-3

5.2 Pervaporation
 Patent Summary A-3

5.3 Dehydration of Aqueous/Organic Mixtures
 Other Potential Process Applications 5-11

5.4 Dehydration of Aqueous/Organic Mixtures
 Energy Requirements for Dehydration of Ethanol 5-11

5.5 Ethanol Dehydration by Pervaporation
 Bases for Estimates and Evaluation 5-21

5.6 Ethanol Dehydration by Pervaporation
 Stream Flows 5-23

5.7 Ethanol Dehydration by Pervaporation
 Major Equipment 5-24
TABLES (Concluded)

5.8 Ethanol Dehydration by Pervaporation
 Utilities Summary 5-25

5.9 Ethanol Dehydration by Pervaporation
 Total Capital Investment 5-28

5.10 Ethanol Dehydration by Pervaporation
 Production Costs 5-29

5.11 Ethanol Dehydration by Azeotropic Distillation
 Production Costs 5-34

6.1 Pervaporation
 Patent Summary A-16

6.2 Volatile Organic Compounds in Wastewater 6-3

6.3 Removal of 1,1,2-Trichloroethane from Wastewater
 Design Bases for Evaluation 6-17

6.4 Removal of 1,1,2-Trichloroethane from Wastewater
 Stream Flows 6-18

6.5 Removal of 1,1,2-Trichloroethane from Wastewater
 Major Equipment 6-19

6.6 Removal of 1,1,2-Trichloroethane from Wastewater
 Utilities Summary 6-20

6.7 Removal of 1,1,2-Trichloroethane from Wastewater
 Capital Investment 6-23

6.8 Removal of 1,1,2-Trichloroethane from Wastewater
 Production Costs 6-24

7.1 Pervaporation
 Patent Summary A-22

7.2 Organic/Organic Separations
 Polymeric Membrane Materials 7-2