Polyethylene terephthalate (PET) is one of the three major thermoplastic families. In the year 2000, PET is expected to reach a total worldwide sales volume of 57 billion pounds (25.9 million tons). It is used in a wide variety of applications ranging from common textile fibers to blow-molded carbonated beverage bottles.

The major raw materials for PET are ethylene glycol (EG) and purified terephthalic acid (PTA). Initially, dimethyl terephthalate (DMT) was used because of PTA purification difficulties. These difficulties have now been overcome, and DMT is now used only in special circumstances such as in existing facilities or where DMT is available internally. PTA is the monomer examined in this report.

Four areas of PET technology are reviewed. The first three are (1) PET by conventional melt plus solid-state polymerization (SSP), (2) PET manufactured using DuPont's new predominantly solid-state process, and (3) PET using modified melt polymerization with conventional SSP. Process flow diagrams, material balances, and detailed techno-economic analyses are presented for these three technologies.

In the first process, most of the polymerization is carried out in the melt phase, which produces sales-grade PET for the polyester fiber market. Solid-state polymerization allows a higher molecular weight to be obtained, which is required for the blow-molded bottle market. It is a natural extension of the fiber process to simply add a solid polymerization stage to boost the molecular weight. This process is shown to be economically the least attractive of the three examined.

The second process uses a novel technique for producing tough polymer particles at a very low molecular weight. This capability allows the mechanically complex melt polymerization section to be greatly reduced, with the bulk of the polymerization carried out in the simpler solid-state reactors. This process is, economically, the most attractive of the three processes.

The third process uses the conventional melt plus SSP approach with major improvements in the melt polymerization stage only. These improvements allow the elimination of some agitated equipment, slightly reducing both capital and operating costs. The economics of this approach are improved over the first process but poorer than the second process.

The fourth technical section examines a variety of new technologies, all of which have interesting aspects but have not yet been commercialized.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOSSARY</td>
<td>xiii</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>2 SUMMARY</td>
<td>2-1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2-1</td>
</tr>
<tr>
<td>STRUCTURE OF THE REPORT</td>
<td>2-1</td>
</tr>
<tr>
<td>INDUSTRY STATUS</td>
<td>2-2</td>
</tr>
<tr>
<td>TECHNICAL ASPECTS</td>
<td>2-2</td>
</tr>
<tr>
<td>Esterification/Transesterification</td>
<td>2-2</td>
</tr>
<tr>
<td>Melt-Phase Polycondensation</td>
<td>2-3</td>
</tr>
<tr>
<td>Solid-State Polymerization</td>
<td>2-3</td>
</tr>
<tr>
<td>PROCESS ECONOMICS</td>
<td>2-4</td>
</tr>
<tr>
<td>Capital Costs</td>
<td>2-4</td>
</tr>
<tr>
<td>Operating Costs</td>
<td>2-4</td>
</tr>
<tr>
<td>Costs of Bottle Manufacture</td>
<td>2-4</td>
</tr>
<tr>
<td>Melt-Phase Resin Capital and Operating Costs</td>
<td>2-5</td>
</tr>
<tr>
<td>3 INDUSTRY STATUS</td>
<td>3-1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>3-1</td>
</tr>
<tr>
<td>HISTORICAL BACKGROUND</td>
<td>3-1</td>
</tr>
<tr>
<td>PET PRODUCTS AND MATERIAL FLOWS</td>
<td>3-2</td>
</tr>
<tr>
<td>MARKETS AND GROWTH</td>
<td>3-5</td>
</tr>
<tr>
<td>PRICES</td>
<td>3-6</td>
</tr>
<tr>
<td>RECYCLING</td>
<td>3-7</td>
</tr>
<tr>
<td>PRODUCERS</td>
<td>3-7</td>
</tr>
<tr>
<td>4 POLYETHYLENE TEREPTHALATE CHEMISTRY AND PHYSICAL PROPERTIES</td>
<td>4-1</td>
</tr>
<tr>
<td>CHEMISTRY OF PET PRODUCTION</td>
<td>4-1</td>
</tr>
</tbody>
</table>
4 POLYETHYLENE TEREPHTHALATE CHEMISTRY AND PHYSICAL PROPERTIES (Concluded)
Catalysis .. 4-2
Alternative Catalyst Systems ... 4-4
Degradation Reactions .. 4-5
Diethylene Glycol Formation Kinetics ... 4-7

PHYSICAL PROPERTIES ... 4-8
Molecular Weight ... 4-8
Melt Viscosity (Rheology) ... 4-11
Diffusion of Gases .. 4-12
Crystallization ... 4-12
Crystallization Measurement Techniques .. 4-13

5 POLYETHYLENE TEREPHTHALATE BY CONVENTIONAL MELT-PHASE PLUS SOLID-STATE POLYMERIZATION ... 5-1
INTRODUCTION ... 5-1
RECENT STUDIES WITH DIMETHYL TEREPHTHALATE 5-2
PAST PEP WORK ... 5-2
OVERALL CHEMISTRY .. 5-3
REVIEW OF CONVENTIONAL PET PROCESSES ... 5-4
Esterification ... 5-4
Esterification Simulation ... 5-6
Polycondensation ... 5-6
Crystallization ... 5-8
Solid-State Polymerization ... 5-8
Catalytic Oxidation .. 5-9
Ethylene Glycol Recycle .. 5-10
DESCRIPTION OF THE PEP PROCESS .. 5-10
CONTENTS (Continued)

5 POLYETHYLENE TEREPTHALATE BY CONVENTIONAL MELT-PHASE PLUS SOLID-STATE POLYMERIZATION (Continued)

Section 100—Esterification ... 5-11
 Feed Preparation ... 5-11
 First Esterification Stage ... 5-11
 Second Esterification Stage ... 5-12

Section 200—Polycondensation ... 5-12
 First and Second Polycondensation Section ... 5-12
 Final (Third) Polycondensation Section ... 5-12

Section 300—Solid-State Polymerization ... 5-12
 Crystallization .. 5-13
 Polymerization .. 5-13

DISCUSSION OF DESIGNED PROCESS .. 5-27

Section 100—Esterification .. 5-27
 Feed Preparation ... 5-27
 First Esterification Stage ... 5-27
 Second Esterification Stage ... 5-28

Section 200—Polycondensation ... 5-29
 First and Second Polycondensation Section ... 5-29
 Final (Third) Polycondensation Section ... 5-29
 Finishing .. 5-30

Section 300—Solid-State Polymerization ... 5-31
 Crystallization .. 5-31
 Polymerization .. 5-31

Materials of Construction ... 5-31
Waste Generation ... 5-31
COST ESTIMATES ... 5-32
 Variable Costs .. 5-32
 Capital Costs ... 5-32
CONTENTS (Continued)

5 POLYETHYLENE TEREPTHALATE BY CONVENTIONAL MELT-PHASE
PLUS SOLID-STATE POLYMERIZATION (Concluded)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Costs</td>
<td>5-33</td>
</tr>
<tr>
<td>Direct Costs</td>
<td>5-33</td>
</tr>
<tr>
<td>Operating Level</td>
<td>5-33</td>
</tr>
</tbody>
</table>

6 POLYETHYLENE TEREPTHALATE BY THE DUPONT NG3 PROCESS 6-1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>6-1</td>
</tr>
<tr>
<td>CHEMISTRY AND PHYSICS</td>
<td>6-1</td>
</tr>
<tr>
<td>PROCESS REVIEW</td>
<td>6-2</td>
</tr>
<tr>
<td>Esterification</td>
<td>6-2</td>
</tr>
<tr>
<td>Pipeline Reactor</td>
<td>6-3</td>
</tr>
<tr>
<td>Column Prepolymerization Reactor</td>
<td>6-3</td>
</tr>
<tr>
<td>Thermoshock Crystallization</td>
<td>6-3</td>
</tr>
<tr>
<td>Solid-State Polymerization</td>
<td>6-4</td>
</tr>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>6-7</td>
</tr>
<tr>
<td>Esterification</td>
<td>6-7</td>
</tr>
<tr>
<td>Melt-Phase Polycondensation</td>
<td>6-7</td>
</tr>
<tr>
<td>Thermoshock Crystallization</td>
<td>6-7</td>
</tr>
<tr>
<td>Solid-State Polymerization</td>
<td>6-8</td>
</tr>
<tr>
<td>PROCESS DISCUSSION</td>
<td>6-15</td>
</tr>
<tr>
<td>Patent Selection</td>
<td>6-15</td>
</tr>
<tr>
<td>Additives and Stabilizers</td>
<td>6-15</td>
</tr>
<tr>
<td>Uncertainties</td>
<td>6-15</td>
</tr>
<tr>
<td>Diethylene Glycol Content</td>
<td>6-15</td>
</tr>
<tr>
<td>Cost of Particle Formers</td>
<td>6-15</td>
</tr>
<tr>
<td>Materials of Construction</td>
<td>6-15</td>
</tr>
<tr>
<td>Waste Streams</td>
<td>6-16</td>
</tr>
<tr>
<td>CAPITAL AND OPERATING COSTS</td>
<td>6-16</td>
</tr>
</tbody>
</table>
CONTENTS (Continued)

7 POLYETHYLENE TEREPHTHALATE BY THE DUPONT UPFLOW MELT PROCESS FOLLOWED BY SOLID-STATE POLYMERIZATION 7-1

INTRODUCTION ... 7-1

OVERALL CHEMISTRY .. 7-1

DESCRIPTION OF THE PROCESS DESIGN ... 7-2

Section 100—Esterification .. 7-4
 Feed Preparation .. 7-4
 Reaction ... 7-5

Section 200—Polycondensation ... 7-5
 Upflow Polycondensation Section ... 7-5
 Final Polycondensation Section ... 7-5

Section 300—Solid-State Polymerization ... 7-5
 Crystallization ... 7-6
 Polymerization .. 7-6

DISCUSSION OF DESIGNED PROCESS ... 7-12

Section 100—Esterification .. 7-12
 Feed Preparation .. 7-12
 Esterification Stage .. 7-12

Section 200—Polycondensation ... 7-13
 First and Second Polycondensation Sections ... 7-13
 Final (Third) Polycondensation Section ... 7-14
 Finishing .. 7-15

Section 300—Solid-State Polymerization ... 7-15
 Crystallization ... 7-15
 Polymerization .. 7-16

Materials of Construction .. 7-16

Waste Generation .. 7-16

COST ESTIMATES ... 7-16

Variable Costs .. 7-16
CONTENTS (Concluded)

7 POLYETHYLENE TEREPTHALATE BY THE DUPONT UPFLOW MELT PROCESS FOLLOWED BY SOLID-STATE POLYMERIZATION (Concluded)

Capital Costs.. 7-17
Production Costs.. 7-17
Direct Costs..7-17
Operating Level.. 7-17

8 OTHER TECHNOLOGICAL INNOVATIONS... 8-1

INTRODUCTION ...8-1
SOLID-STATE POLYMERIZATION... 8-1
Inert-Liquid Solid-State Polymerization..8-1
Using Supercritical CO₂..8-1
Supercritical CO₂ Used As a Polymerization Medium... 8-1
Issues with Use of CO₂ As a Polymerization Medium... 8-3
SSP WITH POROUS PILLS... 8-3
From Ground Polymer.. 8-4
From Low-IV Fibers.. 8-4
Ultra-High IV PET from Microporous High-IV PET Formed by Dissolution and Gelling/Precipitation... 8-4
Microporous PET by Dissolution Followed by Solvent Extraction.........................8-8
MELT POLYCONDENSATION.. 8-8
Inert Gas ..8-8
Use of Ethylene Oxide.. 8-11

APPENDIX A: PATENT SUMMARY TABLES .. A-1
APPENDIX B: DESIGN AND COST BASES ... B-1
APPENDIX C: CITED REFERENCES .. C-1
APPENDIX D: PATENT REFERENCES BY COMPANY.. D-1
APPENDIX E: PROCESS FLOW DIAGRAMS .. E-1
ILLUSTRATIONS

3.1 Materials Flow of PET Resins from p-Xylene Through Recycle............................ 3-4
3.2 Worldwide Uses of PET, 1999.. 3-5
3.3 U.S. Solid-State PET Resin Usage by Application...3-6
3.4 Regional Capacity for PET Melt-Phase Resin...3-8
3.5 Regional Capacity for PET Solid-State Resin...3-8
5.1 PET by Conventional Melt-Phase Plus Solid-State Polymerization:
 Process Flow Diagram ..E-1
5.2 PET by Conventional Melt-Phase Polymerization: Process Flow Diagram E-3
5.3 PET by Conventional Melt-Phase Plus Solid-State Polymerization:
 Block Flow Diagram ..5-5
6.1 Partially Crystalline Polymer Conceptual Diagram...6-2
6.2 Condensation and Polycondensation: Block Flow Diagram..............................6-5
6.3 Shock Crystallization and Solid-State Polymerization: Block Flow Diagram6-6
6.4 Polyethylene Terephthalate by the DuPont NG3 Process:
 Process Flow Diagram ..E-5
7.1 PET by the DuPont Upflow Melt Process and SSP: Block Flow Diagram7-3
7.2 PET by the DuPont Upflow Melt Process Followed by SSP:
 Process Flow Diagram ..E-7
8.1 Inert-Liquid SSP: Block Flow Diagram..8-2
8.2 SSP of Porous Pellets from Ground PET Powder: Block Flow Diagram 8-5
8.3 SSP of Porous Pellets from Low-IV Fibers: Block Flow Diagram 8-6
8.4 SSP of Porous Pellets from Dissolution and Precipitation: Block Flow Diagram .. 8-7
8.5 SSP of Porous Pellets Using Diester Solvent Followed by Solvent Extraction:
 Block Flow Diagram ..8-9
8.6 Preparation of PET Using Column and Wiped-Wall Polymerization Reactors:
 Block Flow Diagram ..8-10
TABLES

2.1 Comparison of Production Costs for Three Solid-State PET Resin Processes2-6
2.2 Production Costs for Melt-Phase PET Resin .. 2-7
3.1 PET Applications vs. Intrinsic Viscosity ... 3-3
3.2 Physical Properties of Polyester Fibers ... 3-3
3.3 Comparison of PET Fibers with Nylon .. 3-3
3.4 Worldwide Leading Producers of Melt-Phase PET Resin .. 3-9
3.5 Worldwide Leading Producers of Solid-Phase PET Resin ... 3-9
3.6 U.S. Producers of PET Polymer .. 3-10
3.7 Western European Producers of PET Polymer ... 3-12
3.8 Japanese Producers of PET Polymer ... 3-15
3.9 U.S. Producers of Solid-Phase PET Resin .. 3-16
3.10 Western European Producers of Solid-Phase PET Resin .. 3-17
3.11 Japanese Producers of Solid-Phase PET Resin ... 3-18
4.1 PET Chemistry and Physical Properties: Patent Summary ... A-3
4.2 DEG Formation Rate Constants During Zinc-Catalyzed Polymerization at 270°C as a Function of Zinc Content ... 4-7
4.3 Comparison of DEG Formation Rate Constants During Zinc-Catalyzed and Antimony-Catalyzed Polymerization ... 4-8
4.4 PET Molecular Weight vs. Intrinsic Viscosity .. 4-10
4.5 Number-Average Molecular Weight of PET vs. Halftime of Crystallization 4-13
5.2 PET by Conventional Melt-Phase Plus Solid-State Polymerization: Design Bases ... 5-14
5.3 PET by Conventional Melt-Phase Plus Solid-State Polymerization: Stream Flows .. 5-16
5.4 PET by Conventional Melt-Phase Plus Solid-State Polymerization: Major Equipment ... 5-17
5.5 PET by Conventional Melt-Phase Plus Solid-State Polymerization: Utilities Summary ... 5-20
5.6 PET by Conventional Melt-Phase Polymerization: Design Bases 5-21
5.7 PET by Conventional Melt-Phase Polymerization: Stream Flows.......................... 5-23
TABLES (Continued)

5.8 PET by Conventional Melt-Phase Polymerization: Major Equipment 5-24
5.9 PET by Conventional Melt-Phase Polymerization: Utilities Summary............... 5-26
5.10 PET by Conventional Melt-Phase Plus Solid-State Polymerization:
 Total Capital Investment ... 5-35
5.11 PET by Conventional Melt-Phase Plus Solid-State Polymerization:
 Capital Investment by Section.. 5-36
5.12 PET by Conventional Melt-Phase Plus Solid-State Polymerization:
 Production Costs.. 5-37
5.13 PET by Conventional Melt-Phase Plus Solid-State Polymerization:
 Direct Costs by Section.. 5-39
5.14 PET by Conventional Melt-Phase Polymerization: Total Capital Investment..... 5-40
5.15 PET by Conventional Melt-Phase Polymerization:
 Capital Investment by Section... 5-41
5.16 PET by Conventional Melt-Phase Polymerization: Production Costs 5-42
5.17 PET by Conventional Melt-Phase Polymerization: Direct Costs by Section 5-44
6.1 PET by the DuPont NG3 Process: Patent Summary A-8
6.2 PET Production by the DuPont NG3 Process:
 Design Bases and Assumptions ... 6-9
6.3 PET Production by the DuPont NG3 Process: Stream Flows.......................... 6-10
6.4 PET Production by the DuPont NG3 Process: Major Equipment.................... 6-12
6.5 PET Production by the DuPont NG3 Process: Utilities Summary.................... 6-14
6.6 PET Production by the DuPont NG3 Process: Total Capital Investment........... 6-18
6.7 PET Production by the DuPont NG3 Process: Production Costs 6-19
7.1 PET by the DuPont Upflow Melt Process Followed by
 Solid-State Polymerization: Patent Summary... A-12
7.2 PET by the DuPont Upflow Melt Process and SSP: Design Basis 7-7
7.3 PET by the DuPont Upflow Melt Process and SSP: Stream Flows................... 7-8
7.4 PET by the DuPont Upflow Melt Process and SSP: Major Equipment 7-9
7.5 PET by the DuPont Upflow Melt Process and SSP: Utilities Summary 7-11
7.6 PET by the DuPont Upflow Melt Process and SSP: Total Capital Investment.... 7-19
7.7 PET by the DuPont Upflow Melt Process and SSP:
 Capital Investment by Section.. 7-20
TABLES (Concluded)

7.8 PET by the DuPont Upflow Melt Process and SSP: Production Costs 7-21
7.9 PET by the DuPont Upflow Melt Process and SSP: Direct Costs by Section....... 7-23
8.1 Other Technological Innovations: Patent Summary.. A-13