Abstract
Process Economics Program Report 185A
POLYETHYLENE BY SLURRY-PHASE POLYMERIZATION
(October 2000)

This report, Supplement 185A to PEP Report 185, Slurry-Phase Polypropylene, which was issued in June 1988, reviews the technology for producing high-density polyethylene (HDPE) or linear low-density polyethylene (LLDPE) by slurry-phase polymerization.

Either double-tube loop reactors or autoclaves (stirred-tank reactors) are commercially employed for slurry-phase polymerization, in the presence of a catalyst system and a diluent. The double-tube loop-reactor slurry process with a light diluent, such as isobutane, is mostly used in the United States and Western Europe, whereas the stirred-tank slurry process with a heavy diluent, such as n-hexane or n-heptane, is widely used in Japan. Several types of catalyst systems are used in the commercial slurry processes; namely, advanced Ziegler catalysts, Ziegler-Natta catalysts, chromium catalysts, and metallocene catalysts. In this report, we review the current technology for slurry-phase polymerization, and evaluate and compare the economics of three slurry processes:

1. Polyethylene by a Slurry Process Using Stirred-Tank Reactors. The design of the process is based on patents assigned to Asahi Chemical and Dow Chemical with polymerization taking place in stirred-tank reactors in the presence of a single-site zirconocene catalyst supported on borate-activated silica.

2. Polyethylene by a Slurry Process Using a Double-Tube Loop Reactor (Zirconocene Catalyst). The design of the process is based on patents assigned to Phillips Petroleum with polymerization taking place in a double-tube loop reactor in the presence of a zirconocene catalyst supported on an organo-aluminoxy compound.

3. Polyethylene by a Slurry Process Using a Double-Tube Loop Reactor (Chromium Catalyst). The design of the process is based on patents assigned to Phillips Petroleum with polymerization taking place in a double-tube loop reactor in the presence of dual-site chromium catalysts supported on calcined aluminum phosphate.

In 1998, world production capacity of HDPE and LLDPE amounted to 25.6 million tons, of which over 57% was from slurry processes. Most commercial slurry processes are, however, basically dedicated to HDPE production, with only a small amount of LLDPE produced.
CONTENTS

GLOSSARY .. viii

1 INTRODUCTION .. 1-1

2 SUMMARY... 2-1

TECHNICAL ASPECTS ... 2-1
Polyethylene by the Slurry Process, Stirred-Tank Reactor
with a Single-Site Catalyst ...2-1
Polyethylene by the Slurry Process, Double-Tube Loop Reactor
with a Zirconocene Catalyst...2-2
Polyethylene by the Slurry Process, Double-Tube Loop Reactor
with a Dual-Site Chromium Catalyst .. 2-2

COMPARISON OF ECONOMICS .. 2-6

3 INDUSTRY STATUS..3-1
INTRODUCTION ...3-1
CONSUMPTION .. 3-1
PRODUCTION CAPACITY .. 3-2

4 SLURRY PROCESS TECHNOLOGY ..4-1
REVIEW OF TECHNOLOGY ...4-2

5 POLYETHYLENE BY THE SLURRY PROCESS
USING STIRRED-TANK REACTORS ...5-1
INTRODUCTION ...5-1

POLYETHYLENE BY THE SLURRY PROCESS
WITH A SINGLE-SITE CATALYST ..5-1
Process Description ...5-1
 Feed Preparation and Polymerization...5-1
 Diluent and Polymer Recovery.. 5-2
 Product Finishing and Packaging.. 5-2

PROCESS DISCUSSION ..5-9

COST ESTIMATES.. 5-10
CONTENTS (Concluded)

6 POLYETHYLENE BY THE SLURRY PROCESS
 USING A DOUBLE-TUBE LOOP REACTOR .. 6-1
 INTRODUCTION ... 6-1

 POLYETHYLENE BY THE SLURRY PROCESS
 WITH A ZIRCONOCENE CATALYST ... 6-1
 Process Description .. 6-1
 Feed Preparation and Polymerization .. 6-1
 Diluent and Polymer Recovery ... 6-2
 Product Finishing and Packaging .. 6-2
 PROCESS DISCUSSION ... 6-9
 COST ESTIMATES ... 6-10

 POLYETHYLENE BY THE SLURRY PROCESS WITH A DUAL-SITE
 CHROMIUM CATALYST ... 6-16
 COST ESTIMATES ... 6-16

7 ECONOMIC COMPARISON OF SLURRY PROCESSES 7-1
 INTRODUCTION ... 7-1
 ECONOMIC COMPARISON .. 7-1

APPENDIX A: PATENT SUMMARY TABLE .. A-1

APPENDIX B: DESIGN AND COST BASES ... B-1

APPENDIX C: CITED REFERENCES .. C-1

APPENDIX D: PATENT REFERENCES BY COMPANY D-1

APPENDIX E: PROCESS FLOW DIAGRAMS ... E-1
ILLUSTRATIONS

5.1 Polyethylene by the Slurry Process Using Stirred-Tank Reactors with a Supported Single-Site Zirconocene Catalyst: Process Flow Diagram ...E-3

5.2 Polyethylene by the Slurry Process Using Stirred-Tank Reactors with a Supported Single-Site Zirconocene Catalyst: Effect of Operating Level and Plant Capacity on Product Value5-15

5.3 Polyethylene by the Slurry Process Using Stirred-Tank Reactors with a Supported Single-Site Zirconocene Catalyst: Effect of Ethylene Unit Price on Product Value ..5-16

6.1 Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Zirconocene Catalyst Supported on an Organo-Aluminoxane Compound: Process Flow Diagram ...E-7

6.2 Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Zirconocene Catalyst Supported on an Organo-Aluminoxane Compound: Effect of Operation Level and Plant Capacity on Product Value6-15

6.3 Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Dual-Site Chromium Catalyst Supported on AlPO4: Process Flow Diagram ..E-11

6.4 Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Dual-Site Chromium Catalyst Supported on AlPO4: Effect of Operation Level and Plant Capacity on Product Value6-24
TABLES

2.1 Polyethylene by the Slurry Process: Stirred-Tank Reactors with a Supported Single-Site Zirconocene Catalyst: Design Bases and Assumptions ... 2-3

2.2 Polyethylene by the Slurry Process: Double-Tube Loop Reactor with a Zirconocene Catalyst Supported on an Organo-Aluminox Compound: Design Bases and Assumptions ... 2-4

2.3 Polyethylene by the Slurry Process: Double-Tube Loop Reactor with a Dual-Site Chromium Catalyst Supported on Calcined AlPO₄: Design Bases and Assumptions ... 2-5

2.4 Polyethylene by Slurry-Phase Processes: Economic Comparison ... 2-7

3.1 Distribution of HDPE Consumption in Five Major Regions ... 3-2

3.2 Polyethylene Producers with Double-Tube Loop Reactors: Production Capacity ... 3-3

3.3 Polyethylene Producers with Stirred-Tank Reactors: Production Capacity ... 3-7

3.4 Five Largest Producers of HDPE (January 2000) .. 3-10

4.1 Polyethylene by Slurry-Phase Polymerization: Patent Summary A-3

4.2 Mixed Catalyst Systems for Bimodal Polyolefins by the Slurry Process 4-5

5.1 Polyethylene by the Slurry Process Using Stirred-Tank Reactors with a Supported Single-Site Zirconocene Catalyst: Design Bases and Assumptions ... 5-3

5.2 Polyethylene by the Slurry Process Using Stirred-Tank Reactors with a Supported Single-Site Zirconocene Catalyst: Stream Flows ... 5-4

5.3 Polyethylene by the Slurry Process Using Stirred-Tank Reactors with a Supported Single-Site Zirconocene Catalyst: Major Equipment ... 5-6

5.4 Polyethylene by the Slurry Process Using Stirred-Tank Reactors with a Supported Single-Site Zirconocene Catalyst: Utilities Summary ... 5-8

5.5 Polyethylene by the Slurry Process Using Stirred-Tank Reactors with a Supported Single-Site Zirconocene Catalyst: Total Capital Investment ... 5-11

5.6 Polyethylene by the Slurry Process Using Stirred-Tank Reactors with a Supported Single-Site Zirconocene Catalyst: Capital Investment by Section ... 5-12
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7</td>
<td>Polyethylene by the Slurry Process Using Stirred-Tank Reactors with a Supported Single-Site Zirconocene Catalyst: Production Costs</td>
</tr>
<tr>
<td>6.1</td>
<td>Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Zirconocene Catalyst Supported on an Organo-Aluminoxy Compound: Design Bases and Assumptions</td>
</tr>
<tr>
<td>6.2</td>
<td>Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Zirconocene Catalyst Supported on an Organo-Aluminoxy Compound: Stream Flows</td>
</tr>
<tr>
<td>6.3</td>
<td>Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Zirconocene Catalyst Supported on an Organo-Aluminoxy Compound: Major Equipment</td>
</tr>
<tr>
<td>6.4</td>
<td>Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Zirconocene Catalyst Supported on an Organo-Aluminoxy Compound: Utilities Summary</td>
</tr>
<tr>
<td>6.5</td>
<td>Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Zirconocene Catalyst Supported on an Organo-Aluminoxy Compound: Total Capital Investment</td>
</tr>
<tr>
<td>6.6</td>
<td>Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Zirconocene Catalyst Supported on an Organo-Aluminoxy Compound: Capital Investment by Section</td>
</tr>
<tr>
<td>6.7</td>
<td>Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Zirconocene Catalyst Supported on an Organo-Aluminoxy Compound: Production Costs</td>
</tr>
<tr>
<td>6.8</td>
<td>Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Dual-Site Chromium Catalyst Supported on AlPO4: Design Bases and Assumptions</td>
</tr>
<tr>
<td>6.9</td>
<td>Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Dual-Site Chromium Catalyst Supported on AlPO4: Stream Flows</td>
</tr>
<tr>
<td>6.10</td>
<td>Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Dual-Site Chromium Catalyst Supported on AlPO4: Total Capital Investment</td>
</tr>
<tr>
<td>6.11</td>
<td>Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Dual-Site Chromium Catalyst Supported on AlPO4: Capital Investment by Section</td>
</tr>
<tr>
<td>6.12</td>
<td>Polyethylene by the Slurry Process Using a Double-Tube Loop Reactor with a Dual-Site Chromium Catalyst Supported on AlPO4: Production Costs</td>
</tr>
<tr>
<td>7.1</td>
<td>Polyethylene by Slurry-Phase Processes: Economic Comparison</td>
</tr>
</tbody>
</table>