Abstract

Process Economics Program Report 182B

AROMATIC PROCESSES

(December 2008)

This report reviews the status of the BTX industry and related production and recovery technologies as of mid year 2008. It is the latest in a series of earlier PEP reports covering various aspects of the industry two of which were issued year end 2006. The current report incorporates and updates information from the earlier reports.

In today’s aromatics complex extractive distillation appears to be the preferred method for recovering benzene or benzene/toluene from mixed C6/C7 aromatic/paraffin mixtures. The GTC Technology GT-BTX™ extractive distillation process was evaluated in one of the earlier reports. The current report includes evaluations of Uhde’s Morphpylene™ and Single Column Morphpylene™ extractive distillation processes.

Another technology focus of this report is BTX recovery from pyrolysis gasoline. Included is an evaluation of SK Corporation’s pyrolysis gasoline upgrading process. Two versions of the process are patented: one uses a C6+ pygas feed (full range) and the other a C7+ pygas feed (debenzenized). The latter is the subject of the evaluation.
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1
 INDUSTRY STATUS .. 2-1
 TECHNICAL APECTS .. 2-3
 BTX from Catalytic Reformate ... 2-3
 Production of Reformate .. 2-3
 Disproportionation/Transalkylation/Isomerization ... 2-3
 Aromatics Recovery .. 2-4
 The Integrated BTX Complex .. 2-5
 BTX from Pyrolysis Gasoline .. 2-5
 BTX from LPG ... 2-6
 ECONOMIC ASPECTS ... 2-6
 Aromatics Recovery ... 2-6
 Pygas Upgrading ... 2-8

3 STATUS OF THE INDUSTRY .. 3-1
 BENZENE ... 3-2
 TOLUENE ... 3-30
 MIXED XYLENES .. 3-47
 P-XYLENE ... 3-68

4 TECHNOLOGY REVIEW .. 4-1
 BTX FROM CATALYTIC REFORMATE ... 4-3
 BTX FROM PYROLYSIS GASOLINE ... 4-7
 BENZENE FROM TOLYENE VIA HYDROHEALKYLATION 4-13
 BTX FROM LPG ... 4-14
 BTX FROM COAL LIGHT OILS .. 4-15
CONTENTS (Continued)

RECENT PATENT DISCLOSURES PERTAINING TO BTX DERIVED FROM NAPHTHA, PYGAS AND LPG (2007-SEPTEMBER 2008 TIMEFRAME) ... 4-15

Axens (Institut Francais du Petrole) ... 4-15
 Novel Moving Bed Reactor System .. 4-15
 Improved Performance of a Moving Bed Reactor ... 4-16
 High Octane and Low Aromatics Content C7 Boiling Range Gasoline 4-16
 Membrane Reactor for Hydrotreating Naphtha Feed to a Reformer 4-16

ExxonMobil ... 4-17
 Reforming Reactor System that Includes EB Conversion to Xylenes.................. 4-17
 Pyrolysis Gasoline Reforming Process ... 4-17

Saudi Basic Industries .. 4-18
 Higher Selectivity LPG Aromatizing Catalyst .. 4-18
 New LPG Aromatizing Catalyst ... 4-18
 LPG Aromatizing Catalyst Performance Improved by S Addition 4-18
 Modified Reforming Reactor Configuration ... 4-18

SK Corporation ... 4-18
 Pyrolysis Gasoline Upgrading Process ... 4-18
 Pyrolysis Gasoline Upgrading Process ... 4-19

Chevron U.S.A .. 4-20
 Preparation of SSZ-56 Molecular Sieve ... 4-20
 Preparation of SSZ-74 Molecular Sieve ... 4-20
 Preparation of SSZ-75 Molecular Sieve ... 4-20

ENI S.p.A .. 4-21
 Catalyst Composition for Aromatizing C3 to C6 Hydrocarbons 4-21
 C3 to C6 Aromatizing Process .. 4-21
 Aromatics Separation from Nonaromatics ... 4-22
 Liquid-Liquid Extraction Technology ... 4-22
 Shell Sulfolane Process .. 4-24
 UOP Udex and Tetra Processes ... 4-26
CONTENTS (Continued)

UOP Carom Process ... 4-26
Lurgi Arosolvane Process .. 4-28
Krupp Uhde Morphylex Technology ... 4-29
Snamprogetti (Enichem) Formex Process 4-30
IFP DMSO Process ... 4-31
Extractive Distillation Processes ... 4-32
 Lurgi Distapex ... 4-33
 Pygas Feed ... 4-33
 Reformate Feed .. 4-34
 Krupp Uhde Morphylane Process 4-35
 Uhde Single Column Morphylane Extractive Distillation Process 4-37
GTC Technology GT-BTX Process ... 4-40
UOP Extractive Distillation Process 4-41

PATENTS AND APPLICATIONS PRETAINING TO LIQUID EXTRACTION OR
EXTRACTIVE DISTILLATION (2000-OCT. 2008) 4-43

GTC Technology Inc ... 4-43
 Revamping an Existing Liquid-Liquid Extraction Process 4-43
 Revamping an Existing Liquid-Liquid Extraction Process 4-43
 Sulfolane/3-Methylsulfolane Extractive Distillation Solvent . 4-43
China Petroleum & Chemical Corporation 4-43
 New Composite Solvent Mixtures for Extractive Distillation 4-43
Gaylord Chemical Corporation .. 4-44
 New Solvent System for Extractive Distillation 4-44
 Organic Sulfoxide/Acyclic Sulfones as Extractive Distillation Solvents 4-44
Phillips Petroleum Company ... 4-44
 Alkyl-Substituted Oxazolidinones as Extractive Distillation Solvents 4-44
Equistar Chemicals, LP ... 4-44
 Improved Operation of Liquid-Liquid Extraction System 4-44
Denim Engineering Inc ... 4-44
 Improved Heat Integration of the Udex Process 4-44
CONTENTS (Continued)

IONIC LIQUIDS AS L-L EXTRACTION SOLVENTS .. 4-45
MEMBRANE SEPARATION PROCESSES ... 4-46
THE INTEGRATED AROMATICS COMPLEX ... 4-46
Selective Toluene Disproportionation (STDP) .. 4-46
Description of a Typical Aromatics Complex Fed With BTX Boiling Range Naphtha 4-49
RECENT UOP DISCLOSURES ON THE INTEGRATED AROMATICS COMPLEX. 4-52
Disproportionation, Transalkylation and Isomerization Technologies 4-55
ExxonMobil ... 4-56
 MTDP-3 Process ... 4-56
 MSTDP Process ... 4-56
 PxMax Process .. 4-57
 TransPlus Process .. 4-57
 XyMax Process .. 4-57
UOP ... 4-58
 PX-Plus Process .. 4-58
 Tatoray Process ... 4-58
 TAC9 Process .. 4-58
 Isomar Process ... 4-59
 Axens-Englehard Octafining Process ... 4-59

5 MORPHYLANE AND SINGLE COLUMN MORPHYLANE EXTRACTIVE
DISTILLATION PROCESSES ... 5-1
PROCESS DESCRIPTION ... 5-1
Morphylane Extractive Distillation Process ... 5-1
Morphylane Battery Limits Capital and Production Cost Estimates 5-3
Single Column Morphylane Extractive Distillation Process 5-8
Single Column Morphylane Battery Limits Capital and Production Cost Estimates . 5-11
Conclusion .. 5-16

6 BTX AROMATICS AND LPG FROM PYROLYSIS GASOLINE 6-1
BTX, LPG AND RAFFINATE FROM PYGAS ... 6-1
CONTENTS (Concluded)

Section 100: Pygas Stabilization and Benzene Heart Cut Separation 6-11
Section 200: Benzene Hydrotreat .. 6-12
Section 300: Hydrocracking/Dealkylation/Transalkylation 6-13
Section 400: Morphylane Divided Wall Column Extractive Distillation 6-15
CAPITAL INVESTMENT ESTIMATE .. 6-15
PRODUCTION COST ESTIMATE ... 6-26
BTX from Pygas with Raffinate Reforming ... 6-26
Sections 100-400 .. 6-26
Section 500: Raffinate Reforming ... 6-27
Capital Investment Estimate .. 6-42
PRODUCTION COST ESTIMATE ... 6-53
Discussion .. 6-53

APPENDIX A: PATENT SUMMARY TABLES .. A-1

APPENDIX B: CITED REFERENCES .. B-1

APPENDIX C: PATENT REFERENCES BY COMPANY ... C-1

APPENDIX D: PROCESS FLOW DIAGRAM ... D-1
FIGURES

3.1 U.S. Average Spot Price for Benzene, Toluene, MTBE and Unleaded Premium Gasoline ... 3-30
4.1 Refinery Block Diagram ... 4-4
4.2 Semi-Regenerative Reforming Process Flow Scheme ... 4-6
4.3 Cyclic Regeneration Reforming Process Flow Scheme ... 4-6
4.4 UOP Continuous Catalyst Regeneration Platforming Process Flow .. 4-7
4.5 Pygas Upgrading Schemes .. 4-11
4.6 GTC Technology GTC-Styrene Process Flow Scheme ... 4-13
4.7 HydroDealkylation Process Flow Scheme .. 4-14
4.8 Solvent Selectivity and Hydrocarbon Solubility .. 4-23
4.9 Shell Sulfolane Process ... 4-25
4.10 UDEX Process Flow Scheme .. 4-26
4.11 UOP Carom Process .. 4-27
4.12 Lurgi Arosolvan Process ... 4-28
4.13 Krupp UDHE Morphylex Process ... 4-30
4.14 Enichem Formex Process .. 4-31
4.15 IFP DMSO Process .. 4-32
4.16 Lurgi Distapex Process Flow Scheme Pygas Feed .. 4-34
4.17 Lurgi Distapex Process Flow Scheme–Reformed Feed ... 4-35
4.18 Krupp UHDE Morphylane Extractive Distillation Process .. 4-36
4.19 Krupp UHDE Octenar Process .. 4-37
4.20 Krupp UHDHE Supermorphylane Extractive Distillation System ... 4-39
4.21 GTC Technology GT-BTX Extractive Distillation Process ... 4-41
4.22A UOP Sulfolane Extractive Distillation Process Flow Scheme .. 4-42
4.22B UOP Sulfolane Extractive Distillation Process Flow Scheme .. 4-42
4.23 Conceptual BTX Liquid Extraction System Using Ionic Liquid Solvent 4-45
4.24 A Typical Aromatics Complex Configuration ... 4-51
4.25 UOP Integrated Aromatics .. 4-52
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.26</td>
<td>UOP Integrated Aromatics Complex Flow Scheme</td>
<td>4-54</td>
</tr>
<tr>
<td>4.27</td>
<td>UOP Integrated Aromatics Flow Scheme</td>
<td>4-55</td>
</tr>
<tr>
<td>5.1</td>
<td>Morphylane Extractive Distillation Process</td>
<td>D-3</td>
</tr>
<tr>
<td>5.2</td>
<td>Single Column Morphylane Extractive Distillation Process</td>
<td>D-5</td>
</tr>
<tr>
<td>5.3</td>
<td>Block Flow Scheme for Simulating Morphylane Extractive Distillation Process</td>
<td>5-10</td>
</tr>
<tr>
<td>6.1</td>
<td>Pygas to BTX, LPG, and C6 Raffinate</td>
<td>D-7</td>
</tr>
<tr>
<td>6.2</td>
<td>Pygas to BTX and LPG</td>
<td>D-13</td>
</tr>
</tbody>
</table>
TABLES

2.1 World Capacity, Production and Growth Rates of BTX - 2007 2-1
2.2 Major Global Producers of BTX... 2-2
2.3 Steam Cracking Pygas Yields.. 2-6
2.4 Benzene Recovery from a Hydrotreated Pygas C6 Heart Cut Fraction Via Morphylane and Single Column Morphylane Process Production Cost.. 2-7
2.5 Pygas Upgrading (SK Corporation Process) With and Without Raffinate Reforming Production Costs ... 2-9
3.1 2007 Worldwide Capacity and Production for BTX Aromatics.......................... 3-3
3.2 Leading Global Producers of Benzene 2007 .. 3-6
3.3 Benzene - Producers and Average Annual Capacities... 3-7
3.4 Announced Expansions and Speculative Additions for Benzene 2007 3-27
3.5 Leading Global Producers of Toluene... 3-31
3.6 Comprehensive List of World Toluene Producers.. 3-32
3.7 Announced Global Expansions and Speculative Additions for Toluene........ 3-46
3.8 Leading Global Producers of Mixed Xylenes ... 3-48
3.9 Comprehensive List of Global Producers of Mixed Xylene............................... 3-49
3.10 Announced Global Expansions of Mixed Xylenes... 3-64
3.11 U.S. Prices for Mixed Xylenes.. 3-67
3.12 Leading Global Producers of P-Xylene ... 3-68
3.13 Comprehensive List of Global P-Xylene Producers ... 3-69
3.14 Announced Global Expansions and Speculative Additions of P-Xylene 3-77
3.15 U.S. Prices for P-Xylene.. 3-80
4.1 Typical Compositions and Properties of Refinery Stream Naphthas.............. 4-3
4.3 Steam Cracking Pygas Yields.. 4-8
4.4 Typical Pyrolysis Gasoline Composition ... 4-9
4.5 Advanced Pygas Upgrading (APU) Yields and Products.................................. 4-10
TABLES (Continued)

4.6 Analysis of a Typical Crude Coke Oven Light Oil ... 4-15
4.7 Liquid Extraction Processes for the Separation of BTX Aromatics from Hydrocarbon Mixtures ... 4-24
4.8 Extractive Distillation Processes for the Separation of BTX from C6+ NonAromatics ... 4-33
4.9 Recent Patents Related to Aromatic/Non-Aromatic Membrane Separation Patent Summary ... A-5
5.1 Extract Distillation (ED) Column Design Parameters .. 5-1
5.2 Morphylane Extractive Distillation Process Stream Flow ... 5-2
5.3 Stripper Column Design Parameters ... 5-3
5.4 Benzene Recovery from a Hydrotreated Pygas C6 Heart Cut Fraction Via Morphylane Extractive Distillation Major Equipment ... 5-4
5.5 Benzene Recovery from a Hydrotreated Pygas C6 Heart Cut Fraction Via Morphylane Extractive Distillation Battery Limits Investment ... 5-5
5.6 Benzene Recovery from a Hydrotreated Pygas C6 Heart Cut Fraction Via Morphylane Extractive Distillation Utility Costs ... 5-6
5.7 Benzene Recovery from a Hydrotreated Pygas C6 Heart Cut Fraction Via Morphylane Extractive Distillation Production Costs ... 5-7
5.8 Single Column Morphylane Extractive Distillation Process Stream Flows ... 5-9
5.9 Single Column Morphylane Divided Wall Column Design Parameters 5-11
5.10 Single Column Morphylane Extractive Distillation Process Major Equipment ... 5-12
5.11 Single Column Morphylane Divided Wall Extractive Distillation Total Battery Limits Investment ... 5-13
5.12 Single Column Morphylane Divided Wall Extractive Distillation Utility Costs ... 5-14
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13</td>
<td>Single Column Morphylene Divided Wall Extractive Distillation Production Costs</td>
</tr>
<tr>
<td>6.1</td>
<td>Pygas to BTX, LPG and C6-Raffinate Section 100 Stream Flows</td>
</tr>
<tr>
<td>6.2</td>
<td>Pygas to BTX, LPG and C6-Raffinate Section 200 Stream Flows</td>
</tr>
<tr>
<td>6.3</td>
<td>Pygas to BTX, LPG and C6-Raffinate Section 300 Stream Flows</td>
</tr>
<tr>
<td>6.4</td>
<td>Pygas to BTX, LPG and C6-Raffinate Section 400 Stream Flows</td>
</tr>
<tr>
<td>6.5</td>
<td>Shu Design Parameters</td>
</tr>
<tr>
<td>6.6</td>
<td>Benzene Heart Cut Hydrotreat Reactor Design Parameters</td>
</tr>
<tr>
<td>6.7</td>
<td>Hydrocracking/Dealkylation/Transalkylation Reactor Design Parameters</td>
</tr>
<tr>
<td>6.8</td>
<td>SK Pygas Upgrading Process Producing BTX, LPG and C6 Raffinate Major Equipment</td>
</tr>
<tr>
<td>6.9</td>
<td>SK Pygas Upgrading Process Producing BTX, LPG and C6 Raffinate Capital Investment</td>
</tr>
<tr>
<td>6.10</td>
<td>SK Pygas Upgrading Process Producing BTX, LPG and C6 Raffinate Capital Investment by Section</td>
</tr>
<tr>
<td>6.11</td>
<td>SK Pygas Upgrading Process Producing BTX, LPG and C6 Raffinate Utility Summary</td>
</tr>
<tr>
<td>6.12</td>
<td>SK Pygas Upgrading Process Producing BTX, LPG and C6 Raffinate Production Cost</td>
</tr>
<tr>
<td>6.13</td>
<td>Pygas to BTX and LPG Section 100 Stream Flows</td>
</tr>
<tr>
<td>6.14</td>
<td>Pygas to BTX and LPG Section 200 Stream Flows</td>
</tr>
<tr>
<td>6.15</td>
<td>Pygas to BTX and LPG Section 300 Stream Flows</td>
</tr>
<tr>
<td>6.16</td>
<td>Pygas to BTX and LPG Section 400 Stream Flows</td>
</tr>
<tr>
<td>6.17</td>
<td>Pygas to BTX and LPG Section 500 Stream Flows</td>
</tr>
</tbody>
</table>
TABLES (Concluded)

6.18 Raffinate Reformer
Design Basis.. 6-41

6.19 SK Pygas Upgrading Process Producing BTX and LPG
Major Equipment ... 6-43

6.20 SK Pygas Upgrading Process Producing BTX and LPG
Total Capital Investment .. 6-47

6.21 SK Pygas Upgrading Process Producing BTX and LPG
Capital Investment by Section ... 6-48

6.22 SK Pygas Upgrading Process Producing BTX and LPG
Utility Summary .. 6-50

6.23 SK Pygas Upgrading Process Producing BTX and LPG
Production Costs .. 6-51