Cogeneration is not a new concept but a proven process used for more than a century in commercial and industrial settings. The economics of cogeneration are very site specific and depend on many factors such as electricity rates, fuel cost, and investment cost. Since the power and heat output of a cogeneration system can never exactly match the requirements of the process plant, economics may also depend on the rates at which cogenerators purchase additional power or sell excess power to a utility if a system is sized for thermal needs. Therefore, the decision to install onsite cogeneration is a balance between the savings gained from the efficiency of a combined heat and power (CHP) system and the additional cost associated with capital, fuel and utility rates.

As a result, onsite cogeneration facilities for industrial applications are mostly situated in oil refineries and chemical plants with large power and process steam requirement having fixed cost advantages. Two key changes in the world’s industrialized economic system are occurring that could make cogeneration more important economically and environmentally—the restructuring of the electric power industry may provide an enhanced economic driver and the efforts to comply with the Kyoto Protocol on global warming may provide an environmental driver for energy efficiency. In recent years, smaller scale cogeneration systems have found applications in commercial sites with modest energy demands. Chemical plants with similar energy demands (3–50 MW of electricity and 10–100 thousand lb/hr of steam) may also consider onsite cogeneration as an attractive option. In this report, we present the economics of smaller "commercial-scale" cogeneration systems to supply chemical plants with electricity and process steam requirements.

This report is a valuable source of information that would be of interest to project planners, researchers, refinery operators, technology licensers, equipment vendors, government regulators, process developers, engineering contractors, and all those who are interested in reducing energy costs and protecting the environment.
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS (Continued)

Government CHP Promotion Policies ... 3-29
China .. 3-30
Europe .. 3-31
Cogeneration Directive .. 3-33

4 TECHNOLOGY REVIEW .. 4-1
INTRODUCTION ... 4-1
Ancillary and Auxiliary Equipment ... 4-1
Prime Movers ... 4-2
HRSG .. 4-2
POWER PRODUCTION CYCLE .. 4-3
Steam Turbine Rankine Cycle ... 4-5
Steam Turbine Cogeneration Cycle Configuration ... 4-8
Steam Turbine Types ... 4-11
Steam Turbine Advantages ... 4-17
Gas Turbine Brayton Cycle ... 4-18
Gas Turbine Operating Modes ... 4-25
Gas Turbine Types .. 4-28
Gas Turbine CHP System Efficiency ... 4-35
Selective Catalytic Reduction ... 4-37
Gas Turbine Advantages ... 4-38
Combined-Cycle Cogeneration ... 4-38
Fuel Chargeable to Power .. 4-43
Advanced Technology Combined Cycle ... 4-45
Diesel Engine Topping Cycle ... 4-46
Diesel Engine Types ... 4-48
Compression-ignition ... 4-48
Spark-ignition .. 4-48
ADOPTION DEVELOPMENT AND IMPROVEMENT 4-49
CONTENTS (Continued)

NEW POWER PRODUCTION TECHNOLOGIES ... 4-49
Integrated Gasification Combined-Cycle (IGCC) .. 4-49
Atmospheric Circulating Fluidized-Bed Boiler (ACFB) ... 4-51
Pressurized Fluidized-Bed Combustion (PCFB) .. 4-51
Fuel Cells .. 4-51
 Phosphoric Acid Fuel Cell .. 4-54
 Molten Carbonate Fuel Cell .. 4-55
 Solid Oxide Fuel Cell ... 4-56
 Proton Exchange Membrane Fuel Cell .. 4-57
Stirling Engines .. 4-60
Mini and Micro Turbines ... 4-60
CHP PERFORMANCE .. 4-61
SUMMARY .. 4-62

5 SCREENING METHODOLOGY .. 5-1
COGENERATION PROCESS CYCLES ... 5-1
MODEL DEVELOPMENT .. 5-2
DESIGN CONSIDERATIONS ... 5-11
Annual Heat Load ... 5-11
System Size ... 5-11
Prime Mover Selection ... 5-13
CHEMICAL INDUSTRY ASPECTS .. 5-18
FUEL AND ENERGY RATES .. 5-21
Spark Spread .. 5-22
CYCLE SCREENING EXAMPLE ... 5-29

6 PROCESS STEAM PRODUCTION .. 6-1
INTRODUCTION ... 6-1
CONTENTS (Continued)

STEAM BY PACKAGE BOILER PROCESS .. 6-1
Thermal Efficiency .. 6-2
Design Basis ... 6-4
Process Description .. 6-4
Process Discussion .. 6-5
 Cost Estimates .. 6-5
 Capital Costs .. 6-6
 Production Costs .. 6-8

STEAM BY FIELD ERECTED BOILER PROCESS ... 6-11
Process Description .. 6-11
Process Discussion .. 6-11
Cost Estimates .. 6-12
 Capital Costs .. 6-13
 Production Costs .. 6-15

7 COGENERATION FROM COMBINED CYCLE SYSTEMS................................. 7-1
 INTRODUCTION ... 7-1
 DESIGN BASIS ... 7-1
 PROCESS DESCRIPTION ... 7-2
 PROCESS DISCUSSION ... 7-3
 COST ESTIMATES ... 7-3
 Capital Costs .. 7-3
 Production Costs .. 7-8
 Discussion of Costs ... 7-14

8 COGENERATION FROM GAS TURBINE SYSTEMS .. 8-1
 INTRODUCTION ... 8-1
 DESIGN BASIS ... 8-1
 PROCESS DESCRIPTION ... 8-3
CONTENTS (Concluded)

PROCESS DISCUSSION ... 8-4
Performance and Efficiency Enhancements .. 8-5
COST ESTIMATES .. 8-6
Capital Costs ... 8-6
Production Costs ... 8-15

APPENDIX A DESIGN AND COST BASES ..otypical-1

APPENDIX B CHP INSTALLATIONS FOR CHEMICAL APPLICATIONS B-1

APPENDIX C CITED REFERENCES .. C-1

APPENDIX D PROCESS FLOW DIAGRAMS ... D-1
FIGURES

1.1 Cumulative Capacity ... 1-2
2.1 Onsite CHP System in Chemical Plants 2-2
2.2 Average CHP System Size of New Installation in Chemical Plants .. 2-3
2.3 Capital Investment for Unfired Gas Turbine CHP Systems ... 2-6
2.4 Gas Turbine Cogeneration Economic Summary 2-7
2.5 CHP Investment Payback Years .. 2-8
3.1 World Electricity Generation by Region—2010 3-2
3.2 World Electricity Generation by Fuel—2010 3-2
3.3 World Electricity Consumption by Region 3-3
3.4 European Baseload Wholesale Prices by Country 3-4
3.5 U.S. Electricity Prices by Sector .. 3-5
3.6 U.S. Real Natural Gas Prices by Sector 3-5
3.7 U.S. Average Electricity and Natural Gas Prices by Region—2010 .. 3-6
3.8 U.S. Average Electricity and Natural Gas Prices by Sector—2010 .. 3-7
3.9 U.S. Average Electricity and Natural Gas Prices—2008 to 2010 .. 3-7
3.10 World CHP Installations by System Type 3-11
3.11 World CHP Capacity by System Type 3-11
3.12 North American Power Industry .. 3-14
3.13 U.S. Net Generation by Electricity Generators 3-18
3.14 U.S. States CHP Penetration .. 3-20
3.15 U.S. Net Generation by Type of Producer 3-21
3.16 U.S. CHP Net Generation by Fuel—2010 3-21
3.17 U.S. Net Generation by Combined Heat and Power 3-22
3.18 U.S. CHP Capacity Share by Application 3-24
3.19 CHP Sites Installed in Chemical Plants 3-25
3.20 U.S. Average CHP System Capacity in Chemical Sites 3-26
3.21 U.S. CHP Capacity in Chemical Sites by Prime Mover 3-27
3.22 U.S. CHP Capacity in Refining Sites by Prime Mover 3-28
FIGURES (Continued)

3.23 CHP System by Prime Mover in United Kingdom ...3-32
4.1 HRSG for Combined Heat and Power ...4-3
4.2 Topping Cycle ..4-4
4.3 Cogeneration by an Organic Bottoming Cycle ..4-5
4.4 Rankine Cycle Power Diagrams ...4-6
4.5 Rankine Cycle Thermodynamic Temperature versus Entropy Diagram4-6
4.6 Steam Turbine Topping-Cycle System ..4-8
4.7 Straight Non-Condensing Steam Turbine Generator ..4-9
4.8 Straight Condensing Steam Turbine Generator ..4-9
4.9 Single Automatic Extraction Steam Turbine Generator ..4-10
4.10 Double Automatic Extractor Condensing ..4-10
4.11 Uncontrolled Extraction Steam Turbine Generator ..4-11
4.12 Configuration of a Steam Turbine Topping-Cycle CHP System4-12
4.13 Siemens SST-150 Steam Turbine ...4-13
4.14 GE A5/A9 Series Condensing Steam Turbine ...4-14
4.15 GE SAN/SANC Backpressure Steam Turbine ...4-15
4.16 Back-Pressure Steam Turbine Topping-Cycle CHP System4-16
4.17 Extraction-Condensing Steam Turbine Topping-Cycle CHP System4-17
4.18 Gas Turbine Components ..4-19
4.19 Simple Gas Turbine Components ..4-19
4.20 Brayton Cycle Thermodynamic Work Diagram ...4-20
4.21 Thermal Efficiency Correlation with Specific Output, Temperature (°C),
 and Compression Ratio (Vertical Lines) ...4-21
4.22 Sequential Combustion ...4-22
4.23 Regenerated Gas Turbine ..4-23
4.24 Intercooled Gas Turbine ..4-23
4.25 Gas Turbine Variations ...4-24
4.26 Open-Cycle Gas Turbine Topping-Cycle CHP System ..4-26
FIGURES (Continued)

4.27 Closed-Cycle Gas Turbine Operating Mode ... 4-27
4.28 Mitsubishi M701F Gas Turbine ... 4-29
4.29 Kawasaki Gas Turbine .. 4-30
4.30 GE LM6000 Gas Turbine (Vanhoussen) ... 4-31
4.31 GE LM2500 Aeroderivative Gas Turbine ... 4-31
4.32 Solar Taurus 65 Gas Turbine .. 4-33
4.33 Siemens SGT 300 Gas Turbine ... 4-34
4.34 Siemens SGT 600 Gas Turbine ... 4-34
4.35 Heat Recovery from a Gas Turbine System .. 4-35
4.36 Gas Turbine Part Load Power Performance ... 4-36
4.37 Combined Cycle System ... 4-39
4.38 Combined Cycle Cogeneration Schematic .. 4-40
4.39 Combined Cycle Power Plant .. 4-41
4.40 Combined Cycle with Non-Condensing Steam Turbine ... 4-42
4.41 Combined Cycle with Extraction/Condensing Steam Turbines 4-43
4.42 Net Heat to Process (NHP) and Fuel Chargeable to Power (FCP) 4-44
4.43 Closed-Loop Heat Recovery System .. 4-46
4.44 Reciprocating Engine Topping-Cycle CHP ... 4-47
4.45 Cool Water Plant Block Flow Diagram .. 4-50
4.46 Fuel Cell Schematic .. 4-53
4.47 PAFC Fuel Cell for CHP .. 4-54
4.48 SOFC/Gas Turbine Hybrid System ... 4-57
4.49 Microturbine Cycle ... 4-61
5.1 Assessment of the Viability of Cogeneration ... 5-1
5.2 Energy Database Development ... 5-3
5.3 Steam Turbine Cycle Net Power Output versus Process Steam Send-Out 5-4
5.4 Steam Turbine Cycle Fuel Usage versus Process Steam Send-Out 5-5
5.5 Gas Turbine Cycle Net Power Output versus Process Steam Send-Out 5-6
FIGURES (Continued)

5.6 Gas Turbine Cycle Fuel Usage versus Process Steam Send-Out5-7
5.7 Combined-Cycle Net Power Output versus Process Steam Send-Out5-8
5.8 Combined-Cycle Fuel Usage versus Process Steam Send-Out5-9
5.9 GE MS Gas Turbine Cogeneration Systems ...5-10
5.10 GE LM Gas Turbine Cogeneration Systems ...5-11
5.11 Thermal Match/Electricity Imbalance ...5-12
5.12 Power Match/Thermal Imbalance ...5-12
5.13 Gas Turbine Size Range by Manufacturer ..5-16
5.14 Gas Turbine Unit Cost ..5-17
5.15 Power to Heat Ratio ...5-21
5.16 U.S. Real Industrial Electricity and Natural Gas Prices5-23
5.17 Dirty Spark Spread in Select EU Countries—20095-24
5.18 Clean Spark Spread in Select EU Countries—20095-24
5.19 Dirty Spark Spread in Select EU Countries—20095-25
5.20 Clean Dark Spread in Select EU Countries—2009 ..5-26
5.21 2000–2010 Clean Spark Spread for Selected EU Countries5-26
5.22 Henry Hub Natural Gas Price ...5-27
5.23 Industrial Electricity and Natural Gas Price Difference5-28
5.24 Simple Payback Years versus Natural Gas and Electricity Price5-29
6.1 Package Boiler Configuration ..6-2
6.2 Steam by Package Boiler Process
 Process Flow Diagram ..D-3
6.3 Package Boiler Schematic ...6-5
6.4 Cogeneration by Combined Cycle Process
 Process Flow Diagram ..D-5
7.1 Effect of Cogeneration Capacity on Capital Investments7-6
7.2 Effect of Cogeneration Capacity on Capital Investments7-8
7.3 Effect of Operating Rate on Electricity Value ...7-11
FIGURES (Concluded)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Effect of Operating Level on Electricity Value</td>
<td>7-14</td>
</tr>
<tr>
<td>8.1</td>
<td>Chemical Process Electricity and Demand Patterns</td>
<td>8-2</td>
</tr>
<tr>
<td>8.2</td>
<td>Effect of Cogeneration Capacity on Capital Investments System 1</td>
<td>8-8</td>
</tr>
<tr>
<td>8.3</td>
<td>Effect of Cogeneration Capacity on Capital Investments System 2</td>
<td>8-10</td>
</tr>
<tr>
<td>8.4</td>
<td>Effect of Cogeneration Capacity on Capital Investments System 3</td>
<td>8-12</td>
</tr>
<tr>
<td>8.5</td>
<td>Effect of Cogeneration Capacity on Capital Investments System 4</td>
<td>8-14</td>
</tr>
<tr>
<td>8.6</td>
<td>Effect of Operating Level on Electricity Value System 1</td>
<td>8-18</td>
</tr>
<tr>
<td>8.7</td>
<td>Effect of Operating Level on Electricity Value System 2</td>
<td>8-21</td>
</tr>
<tr>
<td>8.8</td>
<td>Effect of Operating Level on Electricity Value System 3</td>
<td>8-24</td>
</tr>
<tr>
<td>8.9</td>
<td>Effect of Operating Level on Electricity Value System 4</td>
<td>8-27</td>
</tr>
<tr>
<td>8.10</td>
<td>Effect of Operating Level on Electricity Value System 5</td>
<td>8-30</td>
</tr>
<tr>
<td>8.11</td>
<td>Electricity Value and Natural Gas Price</td>
<td>8-32</td>
</tr>
</tbody>
</table>
TABLES

2.1 Gas Turbine System Summary ... 2-5
3.1 World Combined Heat and Power Capacity .. 3-9
3.2 Combined Heat and Power Application Profile .. 3-12
3.3 Summary of Related U.S. Laws on Cogeneration in Chemical and Petroleum Refining Industries .. 3-15
3.4 U.S. CHP Capacity ... 3-23
3.5 CHP Sites for Chemical Applications .. 3-26
3.6 European Union Electricity Generation by CHP 3-31
3.7 Incentives and Support System for Cogeneration in Europe 3-34
4.1 Power Requirements for Natural Gas Compression 4-25
4.2 Aeroderivative and Heavy Duty Industrial .. 4-28
4.3 Heavy Duty and Aeroderivative Gas Turbines 4-32
4.4 Selected GE Turbine Models ... 4-32
4.5 Fuel Cell Systems ... 4-52
4.6 Fuel Cell Performance Summary ... 4-59
4.7 Typical Cost and Performance Characteristics by CHP Technology 4-62
5.1 Adjustment Factors for Steam Superheat ... 5-10
5.2 Equipment Manufacturers ... 5-14
5.3 Heat Recovery Application Requirements ... 5-15
5.4 CHP Installations by Prime Mover Type ... 5-17
5.5 CHP in Chemical Applications .. 5-19
5.6 Plant Site Characteristics .. 5-30
5.7 Comparison of Cogeneration Cycle Performance 5-30
6.1 Typical thermal efficiencies in package boilers 6-3
6.2 Boiler Thermal Efficiency ... 6-4
6.3 Estimate Bases and Design Parameters ... 6-4
6.4 Steam by Package Boiler Process
 Total Capital Investment ... 6-7
TABLES (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
</table>
| 6.5 | Steam by Package Boiler Process
Production Costs | 6-9 |
| 6.6 | Steam by Field Erected Boiler Process
Total Capital Investment | 6-14 |
| 6.7 | Steam by Field Erected Boiler Process
Production Costs | 6-16 |
| 7.1 | Plant Design Basis | 7-2 |
| 7.2 | Combined Cycle 15 MW
Total Capital Investment | 7-5 |
| 7.3 | Combined Cycle 24 MW
Total Capital Investment | 7-7 |
| 7.4 | Combined Cycle 15 MW
Production Costs | 7-9 |
| 7.5 | Combined Cycle 24 MW
Production Costs | 7-12 |
| 8.1 | Gas Turbine Cogeneration | 8-3 |
| 8.2 | Gas Turbine with Unfired HRSG CHP 1
Total Capital Investment | 8-7 |
| 8.3 | Gas Turbine with Unfired HRSG CHP 2
Total Capital Investment | 8-9 |
| 8.4 | Gas Turbine with Unfired HRSG CHP 3
Total Capital Investment | 8-11 |
| 8.5 | Gas Turbine with Unfired HRSG CHP 4
Total Capital Investment | 8-13 |
| 8.6 | Gas Turbine with Unfired HRSG CHP 1
Production Costs | 8-16 |
| 8.7 | Gas Turbine with Unfired HRSG CHP 2
Production Costs | 8-19 |
| 8.8 | Gas Turbine with Unfired HRSG CHP 3
Production Costs | 8-22 |
| 8.9 | Gas Turbine with Unfired HRSG CHP 4
Production Costs | 8-25 |
| 8.10 | Gas Turbine with Supplementary fired HRSG CHP 1
Production Costs | 8-29 |
TABLES (Concluded)

8.11 Gas Turbine with Supplementary fired HRSG CHP 2
 Production Costs ..8-31

8.12 Gas Turbine System Summary ...8-33