Abstract
Process Economics Program Report 180E
RETROFITTING FOR CARBON CAPTURE
(December 2011)

A great deal of attention has been paid in recent years to the issue of carbon emissions and their effect on climate change. One of the world’s largest contributors to such emissions is the generation of electricity. Because of this, considerable effort has been made in the area of carbon capture and sequestration as applied to power plants.

In previous PEP reports we have looked extensively into carbon capture from coal-fired power plants. In this report we expand our coverage to carbon capture as applied to natural gas combined cycle (NGCC) power generation. We also compare new power plant construction which includes carbon capture to retrofitting carbon capture to existing power infrastructure. We present seven cases: three covering supercritical pulverized coal (SCPC) power and four covering NGCC. The three SCPC cases are: a base case without carbon capture, a new construction case using MEA scrubbing, and a retrofit case where MEA scrubbing is added to an existing SCPC unit. The MEA scrubbing technology we present represents a next generation, updated version of the process we covered in PEP Report 180C. The four NGCC cases are: a base case without carbon capture, a new construction case with MEA scrubbing, a retrofit case, and a new construction case using exhaust gas recycle.
RETROFITTING FOR CARBON CAPTURE

by Michael Arné

December 2011

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

1 INTRODUCTION ... 1-1

2 SUMMARY ... 2-1
 PURPOSE OF THIS STUDY .. 2-1
 SUMMARY OF OUR RESULTS ... 2-2
 KEY ISSUES REGARDING RETROFITS .. 2-2
 SUPERCritical PULverized COAL-FIRED POWER GENERATION 2-3
 MONOETHANOLAMINE SCRUBBING ... 2-3
 SCPC RETROFIT .. 2-4
 NATURAL GAS COMBINED CYCLE POWER GENERATION 2-4
 NGCC RETROFIT ... 2-5
 NGCC WITH EXHAUST GAS RECYCLE ... 2-5
 COST ESTIMATES ... 2-5
 PLANT PERFORMANCE ... 2-7

3 LITERATURE REVIEW ... 3-1
 SURVEY OF LARGE STUDIES BY GOVERNMENTS OR NGOS 3-1
 ADVANCES IN AMINE ABSORPTION TECHNOLOGY ... 3-7
 PHYSICAL PROPERTIES DATA .. 3-10

4 SUPERCritical PULverized COAL POWER GENERATION WITH
CARBON CAPTURE VIA MONOETHANOLAMINE SCRUBBING 4-1
 CHEMISTRY .. 4-1
 Corrosion and Heat Stable Salts .. 4-3
 PROCESS DESCRIPTION ... 4-4
 Supercritical Pulverized Coal without Carbon Capture 4-5
 Carbon Capture Case: CO₂ Compression .. 4-38
 Retrofit Case .. 4-38
CONTENTS (Concluded)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS DISCUSSION</td>
<td>4-45</td>
</tr>
<tr>
<td>Choice of Design Bases</td>
<td>4-45</td>
</tr>
<tr>
<td>Plant Performance Summary</td>
<td>4-50</td>
</tr>
<tr>
<td>COST ESTIMATES</td>
<td>4-50</td>
</tr>
<tr>
<td>Capital Costs</td>
<td>4-50</td>
</tr>
<tr>
<td>Production Costs</td>
<td>4-52</td>
</tr>
<tr>
<td>**5 NATURAL GAS COMBINED CYCLE POWER GENERATION WITH CARBON Capture</td>
<td></td>
</tr>
<tr>
<td>VIA MONOETHANOLAMINE SCRUBBING</td>
<td>5-1</td>
</tr>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>5-1</td>
</tr>
<tr>
<td>Natural Gas Combined Cycle without Carbon Capture</td>
<td>5-2</td>
</tr>
<tr>
<td>Carbon Capture Case: MEA Scrubbing</td>
<td>5-3</td>
</tr>
<tr>
<td>Carbon Capture Case: CO₂ Compression</td>
<td>5-5</td>
</tr>
<tr>
<td>Retrofit Case</td>
<td>5-5</td>
</tr>
<tr>
<td>PROCESS DISCUSSION</td>
<td>5-34</td>
</tr>
<tr>
<td>Choice of Design Bases</td>
<td>5-34</td>
</tr>
<tr>
<td>Plant Performance Summary</td>
<td>5-36</td>
</tr>
<tr>
<td>COST ESTIMATES</td>
<td>5-36</td>
</tr>
<tr>
<td>Capital Costs</td>
<td>5-38</td>
</tr>
<tr>
<td>Production Costs</td>
<td>5-40</td>
</tr>
</tbody>
</table>

APPENDIX A CITED REFERENCES .. A-1

APPENDIX B PROCESS FLOW DIAGRAMS... B-1
3.1 U.S. Geographic Distribution of Coal-Fired Power Plants..3-2
3.2 U.S. Geographic Distribution Water Availability ...3-3
3.3 U.S. Geographic Distribution of Saline Aquifers and CO₂ Pipelines3-4
3.4 U.S. Geographic Distribution of Carbon Sequestration Capacity3-5
3.5 U.S. Geographic Distribution of Oil and Gas Production ..3-6
3.6 Fluor Vapor Recompression Process Layout ...3-8
3.7 Fluor Absorber Cooler Process Layout ..3-9
3.8 Absorber Temperature Profile with Intercooling ..3-9
3.9 Solubility of CO₂ in MEA ...3-14
3.10 Solubility of CO₂ in PZ ..3-15
3.11 Solubility of CO₂ in 1MPZ ..3-15
3.12 Solubility of CO₂ in 2MPZ ..3-16
3.13 Solubility of CO₂ in PZ/2MPZ ..3-16
3.14 Solubility of CO₂ in DGA ..3-17
3.15 Henry’s Law Coefficients of Amines in Water with Estimated Amine Heat of Absorption ..3-20
3.16 CO₂ Heat of Absorption versus Amine Molar Ratio for MEA, DEA, MDEA, AMP ..3-22
3.17 Individual Reaction Contributions to the Enthalpy of CO₂ Absorption into Amine Solution ...3-23
4.1 Supercritical Pulverized Coal Power Generation No Carbon Capture Process Flow Diagram ...B-3
4.2 Supercritical Pulverized Coal Power Generation Carbon Capture via Monoethanolamine Scrubbing Process Flow Diagram ..B-5
4.3 SCPC Generation Carbon Capture and CO₂ Compression via Monoethanolamine Scrubbing Process Flow Diagram ..B-7
4.4 Supercritical Pulverized Coal Power Generation Retrofit for Carbon Capture Process Flow Diagram ..B-11
5.1 Natural Gas Combined Cycle Base Case No Carbon Capture Process Flow Diagram ...B-13
FIGURES (Concluded)

5.2 Natural Gas Combined Cycle Power Generation Carbon Capture via Monoethanolamine Scrubbing
Process Flow Diagram ... B-15

5.3 NGCC Power Generation Carbon Capture and CO₂ Compression via Monoethanolamine Scrubbing
Process Flow Diagram .. B-17

5.4 Natural Gas Combined Cycle Power Generation Retrofit for Carbon Capture
Process Flow Diagram .. B-21

5.5 Natural Gas Combined Cycle Power Generation Carbon Capture with Exhaust Gas Recycle
Process Flow Diagram .. B-23

5.6 NGCC Power Generation Carbon Capture and CO₂ Compression with Exhaust Gas Recycle
Process Flow Diagram .. B-25
TABLES

2.1 Cost of CO₂ Removed/Avoided
SCPC Power Generation Cases
U.S. Midwest 2011 Basis at 0.85 Stream Factor..2-7

2.2 Cost of CO₂ Removed/Avoided
NGCC Power Generation Cases
U.S. Midwest 2011 Basis at 0.85 Stream Factor..2-7

2.3 Plant Performance Summaries
Supercritical Pulverized Coal Power Generation
Carbon Capture via Monoethanolamine Scrubbing...2-8

2.4 Plant Performance Summaries
Natural Gas Combined Cycle Power Generation
Carbon Capture via Monoethanolamine Scrubbing...2-9

3.1 Empirical Correlation of CO₂ Partial Pressure as a Function of Loading and
Temperature ...3-11

3.2 CO₂ Solubility and Total Pressure in MEA, PZ, 1MPZ, 2MPZ, PZ/2MPZ, and
DGA...3-11

3.3 Heats of Absorption of CO₂ in Various Amines...3-13

3.4 Henry’s Law Coefficients of Amines in Water ..3-18

3.5 Henry’s Law Coefficients of Amines in Water Comparison of Measured with
UNIFAC Prediction ..3-21

4.1 Physical Properties of Monoethanolamine ..4-2

4.2 Typical Reclaimer Bottoms Composition...4-4

4.3 Typical Filter Residue Composition...4-4

4.4 Supercritical Pulverized Coal Power Generation
No Carbon Capture
Design Bases..4-10

4.5 Design Coal Specification..4-11

4.6 Supercritical Pulverized Coal
No Carbon Capture
Major Stream Flows...4-12

4.7 Supercritical Pulverized Coal Power Generation
No Carbon Capture
Major Equipment List..4-14

4.8 Supercritical Pulverized Coal Power Generation
Carbon Capture via Monoethanolamine Scrubbing
Design Bases..4-25
TABLES (Continued)

4.9 Supercritical Pulverized Coal Power Generation
Carbon Capture via Monoethanolamine Scrubbing
Major Stream Flows ... 4-26

4.10 Supercritical Pulverized Coal Power Generation with Carbon Capture via
Monoethanolamine Scrubbing
Major Equipment List ... 4-29

4.11 Carbon Capture via Monoethanolamine Scrubbing
Carbon Capture and Compression
Major Equipment ... 4-37

4.12 Supercritical Pulverized Coal Power Generation
Carbon Capture via Monoethanolamine Scrubbing
Retrofit Case
Design Bases ... 4-39

4.13 Supercritical Pulverized Coal Power Generation
Carbon Capture via Monoethanolamine Scrubbing
Retrofit Case
Major Stream Flows ... 4-41

4.14 Carbon Capture via Monoethanolamine Scrubbing Retrofit Case
Carbon Capture and Compression
Major Equipment ... 4-44

4.15 CO₂ Compressor Interstage Pressures .. 4-49

4.16 Plant Performance Summaries
Supercritical Pulverized Coal Power Generation
Carbon Capture via Monoethanolamine Scrubbing 4-53

4.17 Supercritical Pulverized Coal Power Generation
without Carbon Capture
Total Capital Investment ... 4-54

4.18 Supercritical Pulverized Coal Power Generation
with Monoethanolamine Scrubbing
Total Capital Investment ... 4-55

4.19 Supercritical Pulverized Coal Power Generation
with Monoethanolamine Scrubbing, Retrofit Case
Total Capital Investment ... 4-56

4.20 Supercritical Pulverized Coal Power Generation
with Monoethanolamine Scrubbing
Battery Limits Investment—CCS .. 4-57

4.21 Supercritical Pulverized Coal Power Generation
with Monoethanolamine Scrubbing, Retrofit Case
Battery Limits Investment—CCS .. 4-58
<table>
<thead>
<tr>
<th>Table Reference</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.22</td>
<td>Supercritical Pulverized Coal Power Generation without Carbon Capture Production Costs</td>
<td>4-59</td>
</tr>
<tr>
<td>4.23</td>
<td>Supercritical Pulverized Coal Power Generation with Monoethanolamine Scrubbing Production Costs</td>
<td>4-61</td>
</tr>
<tr>
<td>4.24</td>
<td>Supercritical Pulverized Coal Power Generation with Monoethanolamine Scrubbing, Retrofit Case Production Costs</td>
<td>4-63</td>
</tr>
<tr>
<td>5.1</td>
<td>Natural Gas Combined Cycle Power Generation Base Case Design Bases</td>
<td>5-7</td>
</tr>
<tr>
<td>5.2</td>
<td>Natural Gas Combined Cycle Power Generation Base Case Major Equipment List</td>
<td>5-8</td>
</tr>
<tr>
<td>5.3</td>
<td>Natural Gas Combined Cycle Base Case Major Stream Flows</td>
<td>5-12</td>
</tr>
<tr>
<td>5.4</td>
<td>Natural Gas Combined Cycle Power Generation Carbon Capture via Monoethanolamine Scrubbing Design Bases</td>
<td>5-13</td>
</tr>
<tr>
<td>5.5</td>
<td>Natural Gas Combined Cycle Power Generation Carbon Capture via Monoethanolamine Scrubbing Major Equipment List</td>
<td>5-15</td>
</tr>
<tr>
<td>5.6</td>
<td>Carbon Capture via Monoethanolamine Scrubbing Carbon Capture and Compression Major Equipment</td>
<td>5-19</td>
</tr>
<tr>
<td>5.7</td>
<td>Natural Gas Combined Cycle Power Generation Carbon Capture via Monoethanolamine Scrubbing Major Stream Flows</td>
<td>5-20</td>
</tr>
<tr>
<td>5.8</td>
<td>Natural Gas Combined Cycle Power Generation Carbon Capture via Monoethanolamine Scrubbing Retrofit Case Design Bases</td>
<td>5-21</td>
</tr>
<tr>
<td>5.9</td>
<td>Carbon Capture via Monoethanolamine Scrubbing Carbon Capture and Compression, Retrofit Case Major Equipment</td>
<td>5-23</td>
</tr>
<tr>
<td>Table Number</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>Natural Gas Combined Cycle Power Generation Retrofit Case Carbon Capture via Monoethanolamine Scrubbing Major Stream Flows</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-24</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>Natural Gas Combined Cycle Power Generation Carbon Capture via Monoethanolamine Scrubbing with Exhaust Gas Recycle Design Bases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-25</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>Natural Gas Combined Cycle Power Generation Carbon Capture via Monoethanolamine Scrubbing with Exhaust Gas Recycle Major Equipment List</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-27</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td>Carbon Capture via Monoethanolamine Scrubbing EGR Case Carbon Capture and Compression Major Equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-31</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td>Natural Gas Combined Cycle Power Generation Carbon Capture with Exhaust Gas Recycle Major Stream Flows</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-32</td>
<td></td>
</tr>
<tr>
<td>5.15</td>
<td>Plant Performance Summaries Natural Gas Combined Cycle Power Generation Carbon Capture via Monoethanolamine Scrubbing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-37</td>
<td></td>
</tr>
<tr>
<td>5.16</td>
<td>Plant Performance Summaries Natural Gas Combined Cycle Power Generation Carbon Capture via Monoethanolamine Scrubbing with Exhaust Gas Recycle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-38</td>
<td></td>
</tr>
<tr>
<td>5.17</td>
<td>NGCC Power Generation without Carbon Capture Total Capital Investment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-41</td>
<td></td>
</tr>
<tr>
<td>5.18</td>
<td>NGCC Power Generation with MEA Scrubbing Total Capital Investment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-42</td>
<td></td>
</tr>
<tr>
<td>5.19</td>
<td>NGCC Power Generation with MEA Scrubbing, Retrofit Case Total Capital InvestmentT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-43</td>
<td></td>
</tr>
<tr>
<td>5.20</td>
<td>NGCC Power Generation with MEA Scrubbing and Exhaust Gas Recycle Total Capital Investment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-44</td>
<td></td>
</tr>
<tr>
<td>5.21</td>
<td>NGCC Power Generation with MEA Scrubbing Battery Limits Investment—CCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-45</td>
<td></td>
</tr>
<tr>
<td>5.22</td>
<td>NGCC Power Generation with MEA Scrubbing, Retrofit Case Battery Limits Investment—CCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-46</td>
<td></td>
</tr>
</tbody>
</table>
TABLES (Concluded)

5.23 NGCC Power Generation, MEA Scrubbing with Exhaust Gas Recycle
 Battery Limits Investment—CCS ... 5-47

5.24 NGCC Power Generation without Carbon Capture
 Production Costs .. 5-48

5.25 NGCC Power Generation with MEA Scrubbing
 Production Costs .. 5-50

5.26 NGCC Power Generation with MEA Scrubbing, Retrofit Case
 Production Costs .. 5-52

5.27 NGCC Power Generation with MEA Scrubbing, Exhaust Gas Recycle
 Production Costs .. 5-54