Abstract
Process Economics Program Report No. 175B
BLENDs CONTAINING ENGINEERING THERMOPLASTICS
(July 1991)

In recent years, many producers of thermoplastics have focused research into developing blends as a means for expanding the capabilities or reducing the prices of their engineering thermoplastics, and hence, enhancing their marketing efforts. In this report, we focus on the technology and equipment used to make blends of nylons, polyesters, polyphenylene ether (PPE), and various other engineering thermoplastics. In some cases, we speculate as to the compositions of commercial blends whose exact compositions are kept proprietary by the producers.

We also review the industry status of this rapidly growing business area and summarize many of the pertinent patents, a number of which have been issued in the last few years.
CONTENTS (Continued)

5 NYLON BLENDS 5-1
 OVERVIEW 5-1
 NYLON/OLEFINIC ELASTOMERS 5-4
 NYLON/ABS 5-7
 NYLON/ACRYLIC RUBBER 5-9
 NYLON/POLYESTER 5-10
 Nylon/PBT or PET 5-10
 Nylon/Polyarylate 5-10
 Nylon/LCPs 5-10
 NYLON/PC 5-11
 NYLON/SILICONE 5-13
 NYLON/MALEIMIDE 5-15
 NYLON/PTFE 5-15

6 BLENDS OF POLYESTERS 6-1
 PBT AND PET 6-1
 PBT/PET BLENDS 6-1
 PBT/Styrenic Polymer Blends 6-5
 PBT/ABS Blends 6-6
 PBT/SMA Blends 6-7
 PBT/ASA Blends 6-8
 PET/Elastomer Blends 6-9
 PBT/Elastomer Blends 6-10
 PBT or PET/Miscellaneous Blends 6-11
 POLYARYLATES 6-11
 LCPs 6-12
CONTENTS (Continued)

7 BLENDS OF PPE 7-1
OVERVIEW 7-1
PPE/PS 7-1
 Properties of Commercial Blends 7-1
 Blend Compositions 7-2
 PPE 7-2
 Styrenic Polymer 7-3
 Impact Modifiers 7-4
 Hydrogenated or Unhydrogenated SBS 7-5
 Reinforcing Agents 7-5
Other Additives 7-7
 Increasing the Melt Flow Index 7-7
 Increasing Thermal Stability on Aging 7-9
 Improving Chemical Resistance 7-9
 Commercial Blend Composition 7-9
 Production Costs 7-10
PPE/NYLON BLENDS 7-11
 Properties of Commercial Blends 7-12
 Blend Compositions 7-14
 PPE 7-14
 Nylon 7-14
 Impact Modifiers 7-15
Compatibilizing Agents 7-17
 Functionalized PPE 7-18
 Functionalized Impact Modifiers 7-22
 Block Copolymers 7-22
 Dienes or Olefins 7-22
 Composition of Commercial Blends 7-22
 Production Costs 7-22
PPE/POLYESTER 7-26
 Blend Compositions 7-26
 PPE 7-26
 Polyester 7-26
 Impact Modifiers 7-27
CONTENTS (Concluded)

7 BLENDS OF PPE (Concluded)
PPE/POLYESTER (Concluded)
 Reinforcements 7-27
 Compatibilizing Agents 7-27
 Other Additives 7-28
 Composition of Commercial Blends 7-28
 Production Costs 7-28
 PPE/PE 7-28
 PPE/PC 7-28

8 BLENDS OF MISCELLANEOUS ENGINEERING THERMOPLASTICS 8-1
 POLYACETAL 8-1
 SULFONE POLYMERS 8-6
 PSO and PAS 8-6
 PES 8-11
 PEI 8-11
 PPS 8-12
 AKPS 8-16
 POLYIMIDES 8-18
 FLUOROPOLYMERS 8-18

9 EQUIPMENT, PROCEDURES, AND COSTS OF MAKING
 BLENDS OF ENGINEERING THERMOPLASTICS 9-1
 PROCESS DESCRIPTION 9-3
 COST ESTIMATES 9-4

APPENDIX A: PATENT SUMMARY TABLES A-1

APPENDIX B: CITED REFERENCES B-1

APPENDIX C: PATENT REFERENCES BY COMPANY C-1
TABLES

2.1	COMPATIBILIZING AGENTS AND GRAFTED CONSTITUENT POLYMERS USED TO MAKE ETR BLENDS	2-3
2.2	PRODUCTION OF ETR BLENDS MAJOR EQUIPMENT COSTS	2-9
2.3	PRODUCTION OF ETR BLENDS PROCESSING COSTS	2-9
3.1	ESTIMATED U.S. PRODUCTION OF MAJOR ETR BLENDS IN 1988	3-1
3.2	MARKETS (OR INTENDED MARKETS) AND TYPICAL APPLICATIONS FOR MAJOR ETR BLENDS	3-3
3.3	MAJOR ETR PRODUCERS AND THE BLENDS THEY PRODUCE	3-4
3.4	PRODUCERS OF MAJOR ETR BLENDS	3-5
4.1	QUALITATIVE COMPARISON OF PROPERTIES OF NEAT PPE, NEAT NYLON, AND PPE/ NYLON BLEND	4-2
4.2	COMPATIBILIZING AGENTS AND GRAFTED CONSTITUENT POLYMERS USED TO MAKE ETR BLENDS	4-4
5.1	PATENT SUMMARIES FOR NYLON RESIN BLENDS	A-3
5.2	NYLON BLENDS DESCRIBED IN THE PATENT LITERATURE	5-2
5.3	PROPERTIES OF NYLON 6,6 AND IMPACT MODIFIED NYLON 6,6 FROM DU PONT	5-5
5.4	COMPARISON OF PROPERTIES OF ZYTELR 801 WITH THOSE OF AN EXAMPLE FROM THE PATENT LITERATURE	5-6
5.5	COMPARISON OF PROPERTIES OF TRIAX 1125 WITH THOSE OF AN EXAMPLE FROM THE PATENT LITERATURE	5-8
5.6	TYPICAL PROPERTIES OF ZYTELR GENERAL PURPOSE NYLON AND ZYTELR FN NYLON ALLOYS	5-9
5.7	PROPERTIES OF NEAT PC, NEAT NYLON 6, AND PC/ NYLON BLENDS FROM DEXTER CORPORATION	5-12
5.8	COMPARISON OF PROPERTIES OF DEXCARB 405 WITH THOSE OF AN EXAMPLE FROM THE PATENT LITERATURE	5-12
5.9	PROPERTIES OF RIMPLASTR BLENDS OF SILICON- NYLONS FROM PETRARCH	5-13
TABLES (Continued)

5.10 COMPARISON OF PROPERTIES OF PETRARCH'S RIMPLASTR PTA WITH THOSE OF AN EXAMPLE FROM THE PATENT LITERATURE 5-14

5.11 PROPERTIES OF NEAT NYLON, A BLEND OF NYLON/PTFE, AND A BLEND OF NYLON/PTFE/GLASS FIBER 5-16

6.1 PATENT SUMMARIES FOR BLENDS OF POLYESTERS A-26

6.2 PROPERTIES OF NEAT PBT, NEAT PET, AND REPRESENTATIVE COMMERCIAL BLENDS OF PBT/PET 6-3

6.3 COMPARISON OF PROPERTIES OF GENERAL ELECTRIC'S VALOXR 850 WITH THOSE OF AN EXAMPLE FROM THE PATENT LITERATURE 6-4

6.4 PRODUCTION COSTS OF THE PBT/PET BLEND AS DESCRIBED IN THE PATENT LITERATURE 6-5

6.5 PROPERTIES OF NEAT PBT, NEAT ABS, AND CYCOLACR BLENDS OF PBT/ABS FROM GENERAL ELECTRIC 6-6

6.6 PROPERTIES OF NEAT PBT, NEAT SMA, AND DYLARKR DPN BLENDS OF PBT/SMA FROM ARCO CHEMICAL 6-7

6.7 COMPARISON OF PROPERTIES OF DYLARKR DPN-501 WITH THOSE OF AN EXAMPLE FROM THE PATENT LITERATURE 6-8

6.8 PROPERTIES OF DU PONT'S RYNITER GENERAL PURPOSE RESIN PET AND BLENDS OF PET WITH ELASTOMERS 6-9

6.9 PROPERTIES OF NEAT PBT AND COMMERCIAL BLENDS OF PBT AND ELASTOMER 6-10

6.10 BLENDS OF POLYARYLATE REPORTED IN THE PATENT LITERATURE 6-12

6.11 BLENDS OF LCPS REPORTED IN THE PATENT LITERATURE 6-14

7.1 PATENT SUMMARIES FOR BLENDS OF PPE A-50

7.2 COMPARISON OF PROPERTIES OF PPE, HIPS, AND PPE/HIPS BLENDS 7-2

7.3 EFFECTS OF ADDING HYDROGENATED AND UNHYDROGENATED BLOCK COPOLYMERS TO PPE/HIPS BLENDS 7-6

7.4 EFFECTS OF ADDING GLASS FIBER REINFORCEMENT TO BLENDS OF PPE AND HIPS 7-7
TABLES (Continued)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>EFFECTS OF ADDING STYRENE/a-METHYL STYRENE (PAMS) COPOLYMER TO BLENDS OF PPE AND HIPS</td>
<td>7-8</td>
</tr>
<tr>
<td>7.6</td>
<td>COMPARISON OF GENERAL ELECTRIC’S NORYLR 731 WITH AN EXAMPLE IN THE PATENT LITERATURE</td>
<td>7-10</td>
</tr>
<tr>
<td>7.7</td>
<td>PRODUCT VALUE OF PPE/PS BLEND AS DESCRIBED IN TABLE 7.6</td>
<td>7-11</td>
</tr>
<tr>
<td>7.8</td>
<td>QUALITATIVE COMPARISON OF PROPERTIES OF NEAT PPE, NEAT NYLON, AND PPE/NYLON BLEND</td>
<td>7-13</td>
</tr>
<tr>
<td>7.9</td>
<td>COMPARISON OF PROPERTIES OF NEAT PPE, NEAT NYLON 6,6, AND REPRESENTATIVE PPE/NYLON BLENDS</td>
<td>7-14</td>
</tr>
<tr>
<td>7.10</td>
<td>EFFECT OF VARIOUS BLOCK COPOLYMERS ON THE IMPACT STRENGTH OF PE/NYLON BLENDS</td>
<td>7-16</td>
</tr>
<tr>
<td>7.11</td>
<td>PROPERTIES OF PPE/NYLON BLENDS CONTAINING BLOCK COPOLYMER AND ANOTHER IMPACT MODIFIER</td>
<td>7-17</td>
</tr>
<tr>
<td>7.12</td>
<td>EFFECT OF DEGREE OF FUNCTIONALIZATION OF PPE WITH MA ON THE PROPERTIES OF PPE/NYLON BLENDS</td>
<td>7-20</td>
</tr>
<tr>
<td>7.13</td>
<td>EFFECT OF FUNCTIONALIZING PPE AND IMPACT MODIFIER IN PPE/NYLON BLENDS</td>
<td>7-21</td>
</tr>
<tr>
<td>7.14</td>
<td>EFFECT OF FUNCTIONALIZING PPE WITH TAAC IN PPE/NYLON BLENDS</td>
<td>7-21</td>
</tr>
<tr>
<td>7.15</td>
<td>EFFECTS OF USING FUNCTIONALIZED BLOCK COPOLYMERS IN BLENDS OF PPE AND NYLON</td>
<td>7-23</td>
</tr>
<tr>
<td>7.16</td>
<td>COMPARISON OF THE PROPERTIES OF NORYLR GTX 625 WITH AN EXAMPLE FROM THE PATENT LITERATURE</td>
<td>7-24</td>
</tr>
<tr>
<td>7.17</td>
<td>COSTS OF PRODUCING PPE/NYLON BLEND AS DESCRIBED IN PATENT LITERATURE</td>
<td>7-25</td>
</tr>
<tr>
<td>7.18</td>
<td>EFFECT OF ADDING PC TO A PPE/PBT BLEND</td>
<td>7-29</td>
</tr>
<tr>
<td>7.19</td>
<td>COMPARISON OF PROPERTIES OF GEMAXR MX4315 WITH AN EXAMPLE IN THE PATENT LITERATURE</td>
<td>7-30</td>
</tr>
<tr>
<td>7.20</td>
<td>COSTS OF PRODUCING PPE/PBT BLEND AS DESCRIBED IN PATENT LITERATURE</td>
<td>7-31</td>
</tr>
<tr>
<td>8.1</td>
<td>PATENT SUMMARIES FOR BLENDS OF MISCELLANEOUS ETRs</td>
<td>A-93</td>
</tr>
</tbody>
</table>
TABLES (Concluded)

8.2 ELASTOMERS USED TO IMPACT MODIFY POLYACETALS AS DESCRIBED IN THE PATENT LITERATURE 8-3
8.3 PROPERTIES OF NEAT POLYACETAL AND SEVERAL POLYACETAL BLENDS 8-3
8.4 COMPARISON OF PROPERTIES OF DELRINR 100ST WITH EXAMPLES FROM PATENT LITERATURE 8-4
8.5 COSTS OF PRODUCING IMPACT MODIFIED POLYACETAL AS DESCRIBED IN TABLE 8.4 8-5
8.6 BLENDS OF PSO AS DESCRIBED IN THE PATENT LITERATURE 8-8
8.7 COMPARISON OF PROPERTIES OF MINDELR A-670 WITH AN EXAMPLE FROM THE PATENT LITERATURE 8-9
8.8 COSTS OF PRODUCING A PSO/ABS BLEND DESCRIBED IN TABLE 8.7 8-10
8.9 PROPERTIES OF NEAT PSO AND OF PSO/PET BLENDS 8-10
8.10 POLYMERS BLENDED WITH PEI NOTED IN THE PATENT LITERATURE 8-13
8.11 PROPERTIES OF BLENDS OF PEI AND PC 8-14
8.12 BLENDS OF PPS DESCRIBED IN THE PATENT LITERATURE 8-15
8.13 PROPERTIES OF PPS/PPO BLENDS 8-16
8.14 BLENDS OF AKPS DESCRIBED IN THE PATENT LITERATURE 8-17
8.15 PROPERTIES OF NEAT AKP AND BLENDED AKP FROM AMOCO 8-18
9.1 EFFECTS OF PROCESSING METHOD ON PROPERTIES OF PPE AND NYLON 6,6 BLENDS 9-2
9.2 PRODUCTION OF ETR BLENDS CAPITAL INVESTMENT 9-5
9.3 PRODUCTION OF ETR BLENDS PROCESSING COSTS 9-5