Abstract

Process Economics Program Report 169A

INTEGRATED REFINERY/PETROCHEMICAL PROFITABILITY

(August 1995)

This study presents projected profitabilities (1995-2010) of petroleum refining/petrochemical integration for light low-sulfur and heavy high-sulfur crude oil in the U.S. Gulf Coast, Rotterdam, and Singapore. Four crude oil price scenarios are considered. The integrated plant profitabilities are compared with those of stand-alone refineries and stand-alone ethylene plants based on feedstocks that are prevalent in those regions.

The integrated refinery/petrochemical plants consistently show higher profitability than the corresponding stand-alone refineries in all regions. Singapore plants are the most profitable, the U.S. Gulf Coast plants are moderately profitable, and the Rotterdam plants range from break-even profitability with the heavy crude oil (Arabian Heavy) to reasonable profitability with the light crude oil (Brent Blend). In contrast, a stand-alone ethylene plant is consistently profitable only on the U.S. Gulf Coast based on ethane/propane feedstock.

The profitability of the incremental investment for integration of an ethylene plant with a refinery depends on the location and crude oil type used. Integration with light low-sulfur crude oils is a more attractive investment than operating stand-alone ethylene plants in all regions when Arabian Light crude oil prices are below about $30/b. In contrast, integration with heavy high-sulfur crude oil feedstocks becomes attractive compared to stand-alone ethylene plants when Arabian Light crude oil prices are above $30/b. Also, the incremental profitability of integrated plants in Rotterdam and Singapore is higher than that for stand-alone ethylene plants processing naphtha.
CONTENTS

GLOSSARY xix

CONVERSION TABLE xxv

1 INTRODUCTION 1-1

2 SUMMARY 2-1
 METHODOLOGY AND BASES 2-1
 PROCESSING CONFIGURATION 2-6
 Effect of Crude Oil Quality 2-6
 Gasoline Pool Blending 2-6
 REFINERY/PETROCHEMICAL INTERFACIAL TRANSFERS 2-7
 REFINERY/PETROCHEMICAL PROFITABILITY 2-8
 Capital Costs 2-8
 Processing Costs 2-10
 Return on Investment 2-10

3 INDUSTRY STATUS 3-1
 INDUSTRY GROWTH PATTERN 3-1
 FUTURE OUTLOOK 3-1
 INSTALLED CAPACITIES 3-4
 Worldwide Summary 3-4
 North America 3-5
 Europe 3-6
 Asia-Pacific 3-6
 Africa and Middle East 3-6
 Latin America 3-7
 NEW CAPACITIES 3-7

4 METHODOLOGY AND BASES 4-1
 METHODOLOGY 4-1
 CRUDE OIL AND PETROLEUM PRODUCT PRICES 4-2
 Crude Oil Supply and Demand Outlook 4-3
 Petroleum Product Demand 4-5
 Crude Oil and Petroleum Product Price Projections 4-6
 Petrochemical Prices 4-6

- iii -
CONTENTS (Continued)

4 METHODOLOGY AND BASES (Concluded)
CRUDE OIL AND PETROLEUM PRODUCT PRICES (Concluded)
 Ethylene Prices 4-7
 Propylene Prices 4-7
 Butadiene Prices 4-8
 Benzene, Toluene, and Mixed Xylenes Price 4-8
 Transfer Price 4-8
PROFITABILITY CALCULATIONS 4-24
 Investment Costs 4-24
 Production Costs 4-24

5 ETHYLENE CRACKING OPERATIONS 5-1
 TECHNICAL BACKGROUND 5-1
 FEEDSTOCK AND YIELDS 5-3
 Nature of Steam Cracker Feedstock 5-3
 Cracking Yields 5-4
 FEEDSTOCK SELECTION 5-6
 Effect of Feedstock on Investment 5-7
 Utilities Requirement 5-7
 PRODUCT DISPOSITION 5-8
 Ethylene 5-9
 Propylene 5-10
 C4 System 5-12
 Butadiene 5-14
 Butenes 5-16
 Isobutene 5-16
 Pyrolysis Gasoline (Aromatics) 5-16

6 REFINERY/PETROCHEMICAL PROFITABILITY IN THE UNITED STATES 6-1
 PROCESSING CONFIGURATION 6-4
 Crude Oil Quality 6-4
 Petrochemical Integration 6-5
 Product Specifications 6-5
 Gasoline Pool Blending 6-7
CONTENTS (Continued)

6 REFINERY/PETROCHEMICAL PROFITABILITY IN THE UNITED STATES (Concluded)

 REFINERY/PETROCHEMICAL INTERFACIAL TRANSFER 6-7
 PROFITABILITY OF A NEW U.S. REFINERY/PETROCHEMICAL COMPLEX 6-10
 Capital Costs 6-13
 Processing Costs 6-13
 Return on Investment 6-14
 Estimated Benefits for Refinery/Petrochemical Integration 6-16
 Profitability of a Stand-Alone Gaseous Ethylene Plant 6-17
 Integrated Plant Versus Stand-Alone Gaseous-Based Ethylene Plant 6-19
 Incremental Profitability of Integrated Refinery/Petrochemical Plant
 Versus Stand-Alone Ethylene Plant 6-19

7 REFINERY/PETROCHEMICAL PROFITABILITY IN WESTERN EUROPE 7-1

 PROCESSING CONFIGURATION 7-4
 Crude Oil Quality 7-4
 Petrochemical Integration 7-4
 Product Specifications 7-5
 Gasoline Pool Blending 7-5
 REFINERY/PETROCHEMICAL INTERFACIAL TRANSFER 7-6
 PROFITABILITY OF A NEW WESTERN EUROPE 7-7
 REFINERY/PETROCHEMICAL COMPLEX
 Capital Costs 7-11
 Product Revenue 7-11
 Processing Costs 7-12
 Return on Investment 7-12
 Profitability of an Integrated Refinery/Petrochemical Plant
 Versus a Stand-Alone Refinery 7-12
 Estimated Benefits for Refinery/Petrochemical Integration 7-14
 Integrated Complex Versus Stand-Alone
 Naphtha-Based Ethylene Plant 7-15
 Incremental Profitability of an Integrated Refinery/Petrochemical
 Plant Versus a Stand-Alone Ethylene Plant 7-15
CONTENTS (Continued)

8 REFINERY/PETROCHEMICAL PROFITABILITY IN ASIA-PACIFIC 8-1

PROCESSING CONFIGURATION 8-4
 Crude Oil Quality 8-4
 Petrochemical Integration 8-5
 Product Specifications 8-5
 Gasoline Pool Blending 8-5

REFINERY/PETROCHEMICAL INTERFACIAL TRANSFERS 8-7

PROFITABILITY OF A NEW ASIA-PACIFIC
REFINERY/PETROCHEMICAL COMPLEX 8-8
 Capital Costs 8-12
 Product Revenue 8-12
 Processing Costs 8-12
 Return On Investment 8-13
 Profitability of an Integrated Refinery/Petrochemical Plant
 Versus a Stand-Alone Refinery 8-13
 Estimated Benefits for Refinery/Petrochemical Integration 8-14
 Integrated Complex Versus Stand-Alone Naphtha-Based Ethylene Plant 8-15
 Incremental Profitability of the Integrated Refinery/Petrochemical
 Plant Versus the Stand-Alone Ethylene Plant Profitability 8-16

APPENDIX A: DESIGN AND COST BASES A-1

APPENDIX B: CITED REFERENCES B-1

APPENDIX C: PROCESS FLOW DIAGRAMS C-1
ILLUSTRATIONS

2.1 U.S. Gulf Coast Refinery and Integrated Refinery/Petrochemical Plant Profitability 2-12
2.2 Rotterdam Refinery and Integrated Refinery/Petrochemical Plant Profitability 2-12
2.3 Singapore Refinery and Integrated Refinery/Petrochemical Plant Profitability 2-13
2.5 Integrated Refinery/Petrochemical Plant Profitability Versus Stand-Alone Ethylene Plant 2-14
3.1 World Ethylene Demand as a Function of GDP: 1974-1994 3-2
3.2 U.S. Ethylene Demand as a Function of GDP: 1974-1994 3-2
3.3 Western Europe Ethylene Demand as a Function of GDP: 1974-1994 3-3
3.4 Asia-Pacific Ethylene Demand as a Function of GDP: 1974-1994 3-3
4.2 Annual Crude Oil Spot Prices-Arabian Light Versus Maya: 1980-1994 4-12
4.3 Annual Crude Oil Spot Prices-Arabian Light Versus Brent: 1980-1994 4-13
4.4 Annual Crude Oil Spot Prices-Arabian Light Versus Arabian Heavy: 1977-1994 4-13
4.5 Annual Crude Oil Spot Prices-Arabian Light Versus Minas: 1970-1994 4-14
4.6 Naphtha Price (Houston) Versus Crude Oil Price: 1970-1994 4-14
4.7 Premium Unleaded Gasoline Price (Houston) Versus Crude Oil Price: 1982-1994 4-15
4.8 Regular Unleaded Gasoline Price (Houston) Versus Crude Oil Price: 1978-1994 4-15
4.9 No. 2 Fuel Oil Price (Houston) Versus Crude Oil Price: 1970-1994 4-16
4.10 0.7% S Residual Fuel Oil Price (Houston) Versus Crude Oil Price: 1977-1994 4-16
ILLUSTRATIONS (Continued)

4.11 Naphtha Price (Rotterdam) Versus Crude Oil Price: 1973-1994 4-17
4.12 Premium Leaded Gasoline Price (Rotterdam) Versus Crude Oil Price: 1972-1994 4-17
4.13 Regular Gasoline Price (Rotterdam) Versus Crude Oil Price: 1972-1994 4-18
4.15 1.0% S Residual Fuel Oil Price (Rotterdam) Versus Crude Oil Price: 1972-1994 4-19
4.16 Naphtha Price (Singapore) Versus Crude Oil Price: 1978-1994 4-19
4.18 Jet Grade Kerosine Price (Singapore) Versus Crude Oil Price: 1978-1994 4-20
4.19 Gas Oil Price (Singapore) Versus Crude Oil Price: 1978-1994 4-21
4.20 0.3% S Residual Fuel Oil Price (Singapore) Versus Crude Oil Price: 1978-1994 4-21
4.21 Projected Ethylene Price 4-22
4.22 Projected Propylene Price 4-22
5.1 Comparison of Millisecond and Conventional Product Cracking Yields 5-6
5.2 Options for Disposition of Propylene 5-11
5.3 Options for Processing Steam Cracker C₆s 5-13
5.4 Options for Processing BTX Aromatics 5-17
6.1 Fuels/Petrochemical Refinery in U.S. Gulf Coast 208,831 BPCD Louisiana Light Crude Oil Process Flow Diagram C-3
6.2 Fuels/Petrochemical Refinery in U.S. Gulf Coast 220,865 BPCD Mayan Crude Oil Process Flow Diagram C-5
ILLUSTRATIONS (Continued)

6.3 Projected Average Refinery/Petrochemical Revenue, Raw Materials Cost, and Net Margin for Louisiana Light Crude Oil: 1995-2010 6-11
6.4 Projected Average Refinery/Petrochemical Revenue, Raw Materials Cost, and Net Margin for Maya Crude Oil: 1995-2010 6-12
6.5 U.S. Gulf Coast Refinery and Integrated Refinery/Petrochemical Plant Profitability 6-15
6.6 Effect of Crude Oil Transportation Cost on a U.S. Gulf Coast Refinery/Petrochemical Plant Profitability 6-16
6.7 U.S. Profitability of Refinery/Petrochemical Integration Versus Stand-Alone Steam Cracking 6-19
6.8 U.S. Gulf Coast Incremental Integrated Ethylene Plant Versus Stand-Alone Ethane/Propane Cracker Profitability 6-20
7.1 Fuels/Petrochemical Refinery in Rotterdam 212,332 BPCD Brent Blend Crude Oil Process Flow Diagram C-7
7.2 Fuels/Petrochemical Refinery in Rotterdam 209,357 BPCD Arabian Heavy Crude Oil Process Flow Diagram C-9
7.3 Rotterdam Refinery and Integrated Refinery/Petrochemical Plant Profitability 7-8
7.4 Projected Average Refinery/Petrochemical Revenue, Raw Materials Cost, and Net Margin for Brent Blend Crude Oil: 1995-2010 7-9
7.5 Projected Average Refinery/Petrochemical Revenue, Raw Materials Cost, and Net Margin for Arabian Heavy Crude Oil: 1995-2010 7-10
7.6 Effect of Crude Oil Transportation Cost on a Rotterdam Refinery/Petrochemical Plant Profitability 7-13
7.7 Western Europe Profitability of Refinery/Petrochemical Integration Versus Stand-Alone Steam Cracking 7-15
7.8 Rotterdam Incremental Integrated Ethylene Plant Versus Stand-Alone Naphtha Cracker Profitability 7-16
8.1 Fuels/Petrochemical Refinery in Singapore 212,006 BPCD Minas Crude Oil Process Flow Diagram C-11
ILLUSTRATIONS (Concluded)

8.2 Fuels/Petrochemical Refinery in Singapore
224,691 BPCD Arabian Heavy Crude Oil
Process Flow Diagram C-13

8.3 Singapore Refinery and Integrated
Refinery/Petrochemical Plant Profitability 8-9

8.4 Projected Average Refinery/Petrochemical Revenue, Raw Materials
Cost, and Net Margin for Minas Crude Oil: 1995-2010 8-10

8.5 Projected Average Refinery/Petrochemical Revenue, Raw Materials
Cost, and Net Margin for Arabian Heavy Crude Oil: 1995-2010 8-11

8.6 Effect of Crude Oil Transportation Cost on a Singapore
Refinery/Petrochemical Plant Profitability 8-14

8.7 Asia-Pacific Profitability of Refinery/Petrochemical
Integration Versus Stand-Alone Steam Cracking 8-16

8.8 Rotterdam Incremental Integrated Ethylene Plant
Versus Stand-Alone Naphtha Cracker Profitability 8-17
TABLES

2.1 Comparison of U.S. Gulf Coast Refinery and Refinery/Petrochemical Operations 2-2

2.2 Comparison of Rotterdam Fuel and Petrochemical Refinery Operations 2-3

2.3 Comparison of Singapore Fuel and Petrochemical Refinery Operations 2-4

2.4 Petroleum Product Slates in 2000 2-5

2.5 Integrated Refinery/Petrochemical Plant Light Hydrocarbon Disposition 2-7

2.6 Integrated Ethylene Plant Feed Compositions 2-8

2.7 Integrated Refinery/Petrochemical Plant Capital Investment 2-9

2.8 Incremental Capital Investment for Petrochemical Plant Integration Versus Stand-Alone Refinery 2-10

2.9 Integrated Refinery/Petrochemical Plant Utility Requirements 2-10

3.1 World Ethylene Demand 3-1

3.2 World Ethylene Capacity as of January 1, 1995 3-4

3.3 World Ethylene Production as of January 1, 1995 3-5

3.4 North America Ethylene Capacities and Plant Locations as of January 1995 3-8

3.5 Europe Ethylene Capacities and Plant Locations as of January 1995 3-9

3.6 Asia-Pacific Ethylene Capacities and Plant Locations as of January 1995 3-13

3.7 Africa and Middle East Ethylene Capacities and Plant Locations as of January 1995 3-15

3.8 Latin America Ethylene Capacities and Plant Locations as of January 1995 3-16

3.9 Prospective New Ethylene Projects in the World as of January 1995 3-17

4.1 Selected Crude Oils Production and Quality 4-1

4.2 World Oil (Crude and NGL) Production, Trade, and Demand: 1994-2010 4-4

4.3 Oil Products Demand in Major World Regions: 1990-2010 4-5
TABLES (Continued)

4.4 Petroleum Product Slate in 2000 4-6

4.5 Projected Ethylene Price as a Function of Crude Oil Price, Based on Ethylene Production Economics in Houston: 1995 4-9

4.6 Projected Ethylene Price as a Function of Crude Oil Price, Based on Ethylene Production Economics in Rotterdam: 1995 4-10

4.7 Projected Ethylene Price as a Function of Crude Oil Price, Based on Ethylene Production Economics in Singapore: 1995 4-11

4.8 Purchased Utilities Costs in 1993 4-25

4.9 Bases for Refinery/Petrochemical Capital Charges Estimates 4-26

4.10 Bases for Stand-Alone Steam Cracking Capital Charges 4-26

4.11 Order of Magnitude Cost Savings Possible with Vertical Integration 4-27

5.1 Comparison of Millisecond and Conventional Cracking Yields for Gaseous Feedstocks 5-4

5.2 Comparison of Millisecond and Conventional Cracking Yields for Liquid Feedstocks 5-5

5.3 Ethylene Cracking Investment Cost Index 5-7

5.4 Total Utilities Requirements for Ethylene Plants 5-8

5.5 Summary of World Ethylene Demand: 1990-2010 5-9

5.6 World Ethylene Consumption: 1993 5-10

5.7 Summary of World Propylene Demand: 1990-2010 5-10

5.8 World Propylene Sources as of January 1, 1994 5-12

5.9 Summary of World Butadiene Demand 5-14

5.10 Aromatics Production by Sources: 1993 5-18

6.1 Crude Assays for Louisiana Light and Maya Crude Oils 6-1

6.2 Comparison of U.S. Gulf Coast Refinery and Refinery/Petrochemical Operations 6-2

6.3 U.S. Petroleum Product Slate in 2000 6-3
TABLES (Continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.13</td>
<td>United States Refinery Salable By-Products</td>
<td>6-4</td>
</tr>
<tr>
<td>6.14</td>
<td>Estimated U.S. Petroleum Product Specifications in 2000</td>
<td>6-6</td>
</tr>
<tr>
<td>6.15</td>
<td>U.S. Gulf Coast Gasoline Pool Composition</td>
<td>6-8</td>
</tr>
<tr>
<td>6.16</td>
<td>Light Hydrocarbon Disposition</td>
<td>6-9</td>
</tr>
<tr>
<td>6.17</td>
<td>Ethylene Plant Feed Composition</td>
<td>6-9</td>
</tr>
<tr>
<td>6.21</td>
<td>Total Capital Investment in U.S. Gulf Coast</td>
<td>6-13</td>
</tr>
<tr>
<td>6.22</td>
<td>Utility Requirements</td>
<td>6-14</td>
</tr>
<tr>
<td>6.23</td>
<td>Order of Magnitude Cost Savings Possible with Vertical Integration</td>
<td>6-17</td>
</tr>
<tr>
<td>6.25</td>
<td>Steam Cracking Hydrogen Valuation</td>
<td>6-18</td>
</tr>
<tr>
<td>6.26</td>
<td>Effects of Hydrogen Valuation on Ethane/Propane Cracking Profitability</td>
<td>6-18</td>
</tr>
<tr>
<td>6.4</td>
<td>U.S. Gulf Coast Fuels/Petrochemical Refinery Light Hydrocarbons (C₄-) Balance Louisiana Light Crude Oil</td>
<td>6-21</td>
</tr>
<tr>
<td>6.5</td>
<td>U.S. Gulf Coast Fuels/Petrochemical Refinery Light Hydrocarbons (C₄-) Balance Maya Crude Oil</td>
<td>6-22</td>
</tr>
<tr>
<td>6.6</td>
<td>U.S. Gulf Coast Fuels/Petrochemical Refinery Hydrogen Balance</td>
<td>6-23</td>
</tr>
<tr>
<td>6.7</td>
<td>U.S. Gulf Coast Fuels/Petrochemical Refinery Gasoline Blending Louisiana Light Crude Oil</td>
<td>6-24</td>
</tr>
<tr>
<td>6.8</td>
<td>U.S. Gulf Coast Fuels/Petrochemical Refinery Gasoline Blending Mayan Crude Oil</td>
<td>6-25</td>
</tr>
<tr>
<td>6.9</td>
<td>U.S. Gulf Coast Fuels/Petrochemical Refinery Utility Requirements Louisiana Light Crude Oil</td>
<td>6-26</td>
</tr>
<tr>
<td>6.10</td>
<td>U.S. Gulf Coast Fuels/Petrochemical Refinery Utility Requirements Maya Crude Oil</td>
<td>6-27</td>
</tr>
</tbody>
</table>
TABLES (Continued)

6.11 U.S. Gulf Coast Fuels/Petrochemical Refinery
 Total Capital Investment
 Louisiana Light Crude Oil 6-28

6.12 U.S. Gulf Coast Fuels/Petrochemical Refinery
 Total Capital Investment
 Maya Crude Oil 6-29

6.18 U.S. Gulf Coast Refinery/Petrochemical Plant Profitability
 Processing Louisiana Light Crude Oil: 1995 6-30

6.19 U.S. Gulf Coast Refinery/Petrochemical Plant Profitability
 Processing Maya Crude Oil: 1995 6-31

6.20 Factors Influencing Cash Flow Return on Investment in
 U.S. Gulf Coast Refinery/Petrochemical Operation 6-32

6.24 Profitability of Ethylene Production by 70/30 Ethane/Propane
 Steam Cracking in New Large Plants in the U.S. Gulf Coast: 1995 6-33

7.1 Crude Assays for Brent Blend and Arabian Heavy Crude Oils 7-1

7.2 Comparison of Rotterdam Fuel and Petrochemical Refinery Operations 7-2

7.3 Western Europe Petroleum Product Slate in 2000 7-3

7.13 Western Europe Refinery Salable By-Products 7-4

7.14 Estimated Western Europe Petroleum Product Specifications in 2000 7-5

7.16 Light Hydrocarbon Disposition 7-6

7.17 Ethylene Plant Feed Composition 7-7

7.21 Total Capital Investment in Rotterdam 7-11

7.22 Utility Requirements 7-12

7.23 Order of Magnitude Cost Savings Possible
 with Vertical Integration of Refinery/Ethylene Plants 7-14

7.4 Western Europe Fuels/Petrochemical Refinery
 Light Hydrocarbons (C₄⁻) Balance
 Brent Blend Crude Oil 7-17

7.5 Western Europe Fuels/Petrochemical Refinery
 Light Hydrocarbons (C₄⁻) Balance
 Arabian Heavy Crude Oil 7-18
TABLES (Continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>Rotterdam Fuels/Petrochemical Refinery Hydrogen Balance</td>
<td>7-19</td>
</tr>
<tr>
<td>7.7</td>
<td>Rotterdam Fuels/Petrochemical Refinery Gasoline Blending Brent Blend Crude Oil</td>
<td>7-20</td>
</tr>
<tr>
<td>7.8</td>
<td>Rotterdam Fuels/Petrochemical Refinery Gasoline Blending Arabian Heavy Crude Oil</td>
<td>7-21</td>
</tr>
<tr>
<td>7.9</td>
<td>Rotterdam Fuels/Petrochemical Refinery Utility Requirements Brent Blend Crude Oil</td>
<td>7-22</td>
</tr>
<tr>
<td>7.10</td>
<td>Rotterdam Fuels/Petrochemical Refinery Utility Requirements Arabian Heavy Crude Oil</td>
<td>7-23</td>
</tr>
<tr>
<td>7.11</td>
<td>Rotterdam Fuels/Petrochemical Refinery Total Capital Investment Brent Blend Crude Oil</td>
<td>7-24</td>
</tr>
<tr>
<td>7.12</td>
<td>Rotterdam Fuels/Petrochemical Refinery Total Capital Investment Arabian Heavy Crude Oil</td>
<td>7-25</td>
</tr>
<tr>
<td>7.15</td>
<td>Rotterdam Gasoline Pool Composition</td>
<td>7-26</td>
</tr>
<tr>
<td>7.18</td>
<td>Rotterdam Refinery/Petrochemical Plant Profitability Processing Brent Blend Crude Oil: 1995</td>
<td>7-27</td>
</tr>
<tr>
<td>7.19</td>
<td>Rotterdam Refinery/Petrochemical Plant Profitability Processing Arabian Heavy Crude Oil: 1995</td>
<td>7-28</td>
</tr>
<tr>
<td>7.20</td>
<td>Factors Influencing the Cash Flow Return on Investment in Rotterdam Refinery /Petrochemical Operation</td>
<td>7-29</td>
</tr>
<tr>
<td>7.24</td>
<td>Projected Profitability of Ethylene Production by Naphtha Steam Cracking (High Severity) in New Large Plants in Rotterdam</td>
<td>7-30</td>
</tr>
<tr>
<td>8.1</td>
<td>Crude Assays for Minas and Arabian Heavy Crude Oils</td>
<td>8-1</td>
</tr>
<tr>
<td>8.2</td>
<td>Comparison of Singapore Fuel and Petrochemical Refinery Operations</td>
<td>8-2</td>
</tr>
<tr>
<td>8.3</td>
<td>Asia-Pacific Petroleum Product Slate in 2000</td>
<td>8-3</td>
</tr>
<tr>
<td>Table Number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>8.13</td>
<td>Asia-Pacific Refinery Salable Products</td>
<td>8-4</td>
</tr>
<tr>
<td>8.15</td>
<td>Singapore Gasoline Pool Composition</td>
<td>8-6</td>
</tr>
<tr>
<td>8.16</td>
<td>Light Hydrocarbon Disposition</td>
<td>8-7</td>
</tr>
<tr>
<td>8.17</td>
<td>Ethylene Plant Feed Composition</td>
<td>8-8</td>
</tr>
<tr>
<td>8.21</td>
<td>Total Capital Investment in Singapore</td>
<td>8-12</td>
</tr>
<tr>
<td>8.22</td>
<td>Utility Requirements</td>
<td>8-13</td>
</tr>
<tr>
<td>8.23</td>
<td>Order of Magnitude Cost Savings Possible with Vertical Integration</td>
<td>8-15</td>
</tr>
<tr>
<td>8.4</td>
<td>Asia-Pacific Fuels/Petrochemical Refinery Light Hydrocarbons (C₄-) Balance</td>
<td>8-18</td>
</tr>
<tr>
<td></td>
<td>Minas Crude Oil</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Asia-Pacific Fuels/Petrochemical Refinery Light Hydrocarbons (C₄-) Balance</td>
<td>8-19</td>
</tr>
<tr>
<td></td>
<td>Arabian Heavy Crude Oil</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>Singapore Fuels/Petrochemical Refinery Hydrogen Balance</td>
<td>8-20</td>
</tr>
<tr>
<td>8.7</td>
<td>Singapore Fuels/Petrochemical Refinery Gasoline Blending</td>
<td>8-21</td>
</tr>
<tr>
<td></td>
<td>Minas Crude Oil</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>Singapore Fuels/Petrochemical Refinery Gasoline Blending</td>
<td>8-22</td>
</tr>
<tr>
<td></td>
<td>Arabian Heavy Crude Oil</td>
<td></td>
</tr>
<tr>
<td>8.9</td>
<td>Singapore Fuels/Petrochemical Refinery Utility Requirements</td>
<td>8-23</td>
</tr>
<tr>
<td></td>
<td>Arabian Heavy Crude Oil</td>
<td></td>
</tr>
<tr>
<td>8.10</td>
<td>Singapore Fuels/Petrochemical Refinery Utility Requirements</td>
<td>8-24</td>
</tr>
<tr>
<td></td>
<td>Minas Crude Oil</td>
<td></td>
</tr>
<tr>
<td>8.11</td>
<td>Singapore Fuels/Petrochemical Refinery Total Capital Investment</td>
<td>8-25</td>
</tr>
<tr>
<td></td>
<td>Minas Crude Oil</td>
<td></td>
</tr>
</tbody>
</table>
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.12</td>
<td>Singapore Fuels/Petrochemical Refinery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Capital Investment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arabian Heavy Crude Oil</td>
<td>8-26</td>
</tr>
<tr>
<td>8.18</td>
<td>Singapore Refinery/Petrochemical Plant Profitability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Processing Minas Crude Oil: 1995</td>
<td>8-27</td>
</tr>
<tr>
<td>8.19</td>
<td>Singapore Refinery/Petrochemical Plant Profitability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Processing Arabian Heavy Crude Oil: 1995</td>
<td>8-28</td>
</tr>
<tr>
<td>8.20</td>
<td>Factors Influencing Cash Flow Return on Investment in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Singapore Refinery/Petrochemical Operation</td>
<td>8-29</td>
</tr>
<tr>
<td>8.24</td>
<td>Profitability of Ethylene Production by Naphtha Steam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cracking (High Severity) in New Large Plants in Singapore</td>
<td>8-30</td>
</tr>
</tbody>
</table>