Carbon fibers are a group of flexible, continuous or chopped, filaments derived from polyacrylonitrile (PAN), pitch, or rayon via a series of high temperature heating steps. These fibers have exceptionally high strength and high modulus. They are used in resin-based composites for the fabrication of parts in high performance aircraft, space vehicles, and sporting goods where carbon fibers save weight.

This supplementary report reviews the market conditions and technical progresses on carbon fibers since PEP Report 165 on the subject was released in September 1983. The economics developed in this report are for producing high-performance carbon fibers by the following technologies:

- A new process to produce precursor grade PAN by a melt extrusion process developed by BASF
- Stabilization, carbonization, and graphitization of the melt extruded PAN precursor to produce oxidized PAN, carbon fiber, and graphite fiber
- A new process developed by Tonen for the preparation of mesophase pitch as a carbon fiber precursor by heat treatment and hydrogenation
- Stabilization, carbonization, and graphitization of the mesophase pitch precursor to produce oxidized pitch fiber, carbon fiber, and graphite fiber.

For those who are in the carbon fibers business, this report will be useful for its extensive review of recently published literature and the comparative economics; for those considering entry into the business, it will be useful for its selection of technologies and feedstocks.
CONTENTS

1 INTRODUCTION 1-1

2 SUMMARY 2-1
 GENERAL ASPECTS 2-1
 ECONOMIC ASPECTS 2-2
 TECHNICAL ASPECTS 2-8
 PAN Precursor Production 2-8
 Polymerization 2-8
 Fiber Spinning 2-9
 PAN Fiber Thermal and Surface Treatments 2-9
 Pitch Precursor Production 2-10
 Mesophase Pitch Preparation 2-10
 Fiber Spinning 2-11
 Pitch Fiber Thermal and Surface Treatments 2-11

3 INDUSTRY STATUS 3-1
 PRECURSOR DEVELOPMENTS 3-1
 Rayon Precursor 3-1
 PAN Precursor 3-2
 Mesophase Pitch Precursor 3-3
 Isotropic Pitch Precursor 3-3
 PLANT CAPACITIES AND PRODUCT BRANDS 3-3
 PAN-based Carbon Fibers 3-3
 Pitch-based Carbon Fibers 3-6
 Rayon-based Carbon Fibers 3-6
 PRODUCTION AND CONSUMPTION 3-6
 PAN-based Carbon Fibers 3-8
 Pitch-based Carbon Fibers 3-8
 Rayon-based Carbon Fibers 3-8
 PRODUCT PROPERTIES 3-10
 PRICES 3-12
 MARKET SUMMARY 3-14
CONTENTS (Continued)

4 POLYACRYLONITRILE PRECURSOR FIBER BY A MELT EXTRUSION PROCESS
 REVIEW OF TECHNOLOGY
 Carbon Fiber Production Sequence
 Precursor Property Requirements
 Polymer Composition
 Conventional Methods of Spinning
 Wet Spinning
 Dry Spinning
 Melt Spinning
 Comparison of Process Flow Diagrams
 Discussion of Patents

 REVIEW OF DESIGN BASES

 PROCESS DESCRIPTION
 Polymerization (Section 100)
 Pelletizing-Compounding (Section 200)
 Melt Extrusion (Section 300)

 PROCESS DISCUSSION

 COST ESTIMATES
 Capital Costs
 Production Costs
 Discussion of Costs

5 CARBON FIBER FROM POLYACRYLONITRILE
 REVIEW OF PROCESS
 Chemistry and Heat Treating Sequence
 Products Classification
 Patents

 REVIEW OF DESIGN BASES

 PROCESS DESCRIPTION
 Thermosetting/Stabilization (Section 100)
 Carbonization (Section 200)
 SCF Surface Treatment (Section 300)
 Graphitization and SGF Surface Treatment (Section 400)
CONTENTS (Continued)

5 CARBON FIBER FROM POLYACRYLONITRILE (Concluded)
 PROCESS DISCUSSION 5-16
 COST ESTIMATES 5-16
 Capital Costs 5-16
 Production Costs 5-16
 Discussion of Costs 5-17

6 CARBON FIBER FROM MESOPHASE PITCH - PREPARATION AND SPINNING 6-1
 PITCH PROPERTIES 6-1
 REVIEW OF PROCESSES 6-2
 Pitch Preparation Processes 6-4
 Thermal Treatment 6-4
 Solvent Extraction 6-6
 Hydrogenation 6-6
 Patents 6-6
 REVIEW OF DESIGN BASES 6-7
 PROCESS DESCRIPTION 6-11
 Pitch Preparation (Section 100) 6-11
 Spinning (Section 200) 6-12
 PROCESS DISCUSSION 6-18
 COST ESTIMATES 6-19
 Capital Costs 6-19
 Production Costs 6-19

7 CARBON FIBER FROM MESOPHASE PITCH - THERMOSETTING, CARBONIZATION, AND GRAPHITIZATION 7-1
 REVIEW OF PROCESS 7-1
 REVIEW OF DESIGN BASES 7-3
 PROCESS DESCRIPTION 7-5
 Thermosetting (Section 100) 7-5
 Carbonization (Section 200) 7-5
 SPCF Surface Treatment (Section 300) 7-6
 Graphitization and SPGF Surface Treatment (Section 400) 7-6
CONTENTS (Concluded)

7 CARBON FIBER FROM MESOPHASE PITCH -
THERMOSETTING, CARBONIZATION, AND GRAPHITIZATION (Concluded)

PROCESS DISCUSSION 7-11
COST ESTIMATES 7-11
 Capital Costs 7-11
 Production Costs 7-12
 Discussion of Costs 7-12

APPENDIX A: PATENT SUMMARY TABLES A-1
APPENDIX B: DESIGN AND COST BASES B-1
APPENDIX C: CITED REFERENCES C-1
APPENDIX D: PATENT REFERENCES BY COMPANY D-1
APPENDIX E: PROCESS FLOW DIAGRAMS E-1
ILLUSTRATIONS

2.1 PROCESS FLOW DIAGRAM FOR POLYACRYLONITRILE (PAN)-BASED OR MESOPHASE PITCH-BASED CARBON FIBERS 2-3

3.1 RANGES OF TENSILE STRENGTH AND MODULUS OF TORAYCA® PAN-BASED CARBON FIBERS 3-11

3.2 STRENGTH AND MODULUS RELATIONSHIPS OF PAN-BASED AND PITCH-BASED CARBON FIBERS 3-13

4.1 CARBON FIBER FROM POLYACRYLONITRILE CHEMICAL AND MOLECULAR CHANGES DURING PRODUCTION 4-3

4.2 PAN FIBER BY SOLUTION POLYMERIZATION AND WET SPINNING 4-7

4.3 PAN FIBER BY SUSPENSION POLYMERIZATION AND MELT EXTRUSION 4-8

4.4 PAN-PRECURSOR FIBER BY A MELT EXTRUSION PROCESS FLOW DIAGRAM E-3

4.5 PAN PRECURSOR FIBER BY A MELT EXTRUSION PROCESS EFFECT OF OPERATING LEVEL AND PLANT CAPACITY ON PRODUCT VALUE 4-24

5.1 CARBON FIBER FROM POLYACRYLONITRILE CHEMICAL AND STRUCTURAL CHANGES DURING HEAT TREATMENTS 5-2

5.2 CARBON FIBER FROM POLYACRYLONITRILE DIAGRAM OF PRODUCT SLATE 5-6

5.3 CARBON FIBER FROM POLYACRYLONITRILE PROCESS FLOW DIAGRAM E-7

5.4 OXIDIZED FIBER FROM PAN PRECURSOR EFFECT OF CAPACITY ON CAPITAL INVESTMENT 5-30

5.5 UNSIZED CARBON FIBER FROM OXIDIZED PAN EFFECT OF CAPACITY ON CAPITAL INVESTMENT 5-31

5.6 SIZED CARBON FIBER FROM UNSIZED CARBON FIBER EFFECT OF CAPACITY ON CAPITAL INVESTMENT 5-32

5.7 PAN-BASED SIZED GRAPHITE FIBER FROM UNSIZED CARBON FIBER EFFECT OF CAPACITY ON CAPITAL INVESTMENT 5-33

5.8 OXIDIZED FIBER FROM PAN PRECURSOR EFFECT OF OPERATING LEVEL AND PLANT CAPACITY ON PRODUCT VALUE 5-34
ILLUSTRATIONS (Concluded)

5.9 UNSIZED CARBON FIBER FROM OXIDIZED PAN
 EFFECT OF OPERATING LEVEL AND PLANT CAPACITY
 ON PRODUCT VALUE 5-35

5.10 SIZED CARBON FIBER FROM UNSIZED CARBON FIBER
 EFFECT OF OPERATING LEVEL AND PLANT CAPACITY
 ON PRODUCT VALUE 5-36

5.11 PAN-BASED Sized GRAPHITE FIBER FROM UNSIZED GRAPHITE FIBER
 EFFECT OF OPERATING LEVEL AND PLANT CAPACITY
 ON PRODUCT VALUE 5-37

6.1 CARBON FIBER FROM MESOPHASE PITCH
 MORPHOLOGICAL CHANGES OF PITCH
 RESULTING FROM HEAT TREATMENT 6-5

6.2 FIBER FROM MESOPHASE PITCH
 PROCESS FLOW DIAGRAM E-9

6.3 FIBER FROM MESOPHASE PITCH
 EFFECT OF CAPACITY ON CAPITAL INVESTMENT 6-25

6.4 FIBER FROM MESOPHASE PITCH
 EFFECT OF OPERATING LEVEL AND PLANT CAPACITY
 ON PRODUCT VALUE 6-26

7.1 MESOPHASE PITCH-BASED CARBON FIBERS
 PROCESS FLOW DIAGRAM E-11

7.2 CARBON FIBER FROM MESOPHASE PITCH
 DIAGRAM OF PRODUCT SLATE 7-7

7.3 FAMILY OF PITCH-BASED CARBON FIBERS
 EFFECT OF CAPACITY ON CAPITAL INVESTMENT 7-25

7.4 OXIDIZED PITCH FIBER
 EFFECT OF OPERATING LEVEL AND PLANT CAPACITY
 ON PRODUCT VALUE 7-26

7.5 UNSIZED PITCH-BASED CARBON FIBER
 EFFECT OF OPERATING LEVEL AND PLANT CAPACITY
 ON PRODUCT VALUE 7-27

7.6 SIZED PITCH-BASED CARBON FIBER
 EFFECT OF OPERATING LEVEL AND PLANT CAPACITY
 ON PRODUCT VALUE 7-28

7.7 SIZED PITCH-BASED GRAPHITE FIBER
 EFFECT OF OPERATING LEVEL AND PLANT CAPACITY
 ON PRODUCT VALUE 7-29
TABLES

2.1 SUMMARY OF ECONOMICS FOR PAN-BASED PRECURSOR AND CARBON FIBERS 2-6

2.2 SUMMARY OF ECONOMICS FOR MESOPHASE PITCH-BASED PRECURSOR AND CARBON FIBERS 2-7

3.1 PLANT CAPACITIES AND BRAND NAMES OF PAN-BASED CARBON FIBERS 3-5

3.2 PLANT CAPACITIES AND BRAND NAMES OF PITCH-BASED CARBON FIBERS 3-7

3.3 PRODUCTION AND CONSUMPTION OF PAN-BASED CARBON FIBERS 3-9

3.4 PRODUCT APPLICATIONS FOR PAN-BASED CARBON FIBERS IN 1990 3-10

3.5 PHYSICAL PROPERTIES OF COMMERCIAL PAN-BASED CARBON FIBERS 3-15

3.6 PHYSICAL PROPERTIES OF COMMERCIAL PITCH-BASED CARBON FIBERS 3-17

4.1 POLYACRYLONITRILE PRECURSOR FIBER BY A MELT EXTRUSION PROCESS PATENT SUMMARY A-3

4.2 PAN FIBER BY A MELT EXTRUSION PROCESS DESIGN BASES 4-10

4.3 PAN PRECURSOR FIBER BY A MELT EXTRUSION PROCESS STREAM FLOWS 4-14

4.4 POLYACRYLONITRILE PRECURSOR FIBER BY MELT EXTRUSION MAJOR EQUIPMENT 4-15

4.5 POLYACRYLONITRILE PRECURSOR FIBER BY MELT EXTRUSION UTILITIES SUMMARY 4-17

4.6 POLYACRYLONITRILE PRECURSOR FIBER BY MELT EXTRUSION TOTAL CAPITAL INVESTMENT 4-20

4.7 POLYACRYLONITRILE PRECURSOR FIBER BY MELT EXTRUSION CAPITAL INVESTMENT BY SECTION 4-21

4.8 POLYACRYLONITRILE PRECURSOR FIBER BY MELT EXTRUSION PRODUCTION COSTS 4-22
TABLES (Continued)

5.1 CARBON FIBERS FROM POLYACRYLONITRILE
PATENT SUMMARY A-6

5.2 CARBON FIBER FROM POLYACRYLONITRILE
DESIGN BASES 5-7

5.3 CARBON FIBER FROM POLYACRYLONITRILE
STREAM FLOWS 5-11

5.4 FAMILY OF CARBON FIBERS FROM POLYACRYLONITRILE
MAJOR EQUIPMENT 5-13

5.5 FAMILY OF CARBON FIBERS FROM POLYACRYLONITRILE
UTILITIES SUMMARY 5-15

5.6 FAMILY OF CARBON FIBERS FROM POLYACRYLONITRILE
TOTAL CAPITAL INVESTMENT 5-19

5.7 FAMILY OF CARBON FIBERS FROM POLYACRYLONITRILE
CAPITAL INVESTMENT BY SECTION 5-20

5.8 OXIDIZED PAN FIBER FROM POLYACRYLONITRILE
PRODUCTION COSTS 5-22

5.9 UNSIZED CARBON FIBER FROM OXIDIZED PAN FIBER
PRODUCTION COSTS 5-24

5.10 SIZED CARBON FIBER FROM UNSIZED CARBON FIBER
PRODUCTION COSTS 5-26

5.11 GRAPHITE FIBER FROM UNSIZED CARBON FIBER
PRODUCTION COSTS 5-28

6.1 CHEMICAL COMPOSITION AND PHYSICAL PROPERTIES
OF COAL TAR AND PETROLEUM PITCH 6-3

6.2 CARBON FIBERS FROM PITCH
PATENT SUMMARY A-17

6.3 PITCH PREPARATION AND PITCH FIBER SPINNING
DESIGN BASES 6-8

6.4 TYPICAL PROPERTIES OF ASHLAND A-240 PETROLEUM PITCH
6-10

6.5 MESOPHASE PITCH PREPARATION AND SPINNING
STREAM FLOWS 6-13
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>MESOPHASE PITCH PREPARATION AND SPINNING MAJOR EQUIPMENT</td>
<td>6-15</td>
</tr>
<tr>
<td>6.7</td>
<td>MESOPHASE PITCH PREPARATION AND SPINNING UTILITIES SUMMARY</td>
<td>6-17</td>
</tr>
<tr>
<td>6.8</td>
<td>MESOPHASE PITCH PREPARATION AND SPINNING TOTAL CAPITAL INVESTMENT</td>
<td>6-21</td>
</tr>
<tr>
<td>6.9</td>
<td>MESOPHASE PITCH PREPARATION AND SPINNING CAPITAL INVESTMENT BY SECTION</td>
<td>6-22</td>
</tr>
<tr>
<td>6.10</td>
<td>MESOPHASE PITCH PREPARATION AND SPINNING PRODUCTION COSTS</td>
<td>6-23</td>
</tr>
<tr>
<td>7.1</td>
<td>PROCESS TEMPERATURES FOR MESOPHASE PITCH-DERIVED CARBON FIBERS</td>
<td>7-2</td>
</tr>
<tr>
<td>7.2</td>
<td>CARBON FIBER FROM MESOPHASE PITCH - STABILIZATION, CARBONIZATION, AND GRAPHITIZATION</td>
<td>7-4</td>
</tr>
<tr>
<td>7.3</td>
<td>FAMILY OF CARBON FIBERS FROM MESOPHASE PITCH MAJOR EQUIPMENT</td>
<td>7-8</td>
</tr>
<tr>
<td>7.4</td>
<td>FAMILY OF CARBON FIBERS FROM MESOPHASE PITCH UTILITIES SUMMARY</td>
<td>7-10</td>
</tr>
<tr>
<td>7.5</td>
<td>FAMILY OF CARBON FIBERS FROM MESOPHASE PITCH TOTAL CAPITAL INVESTMENT</td>
<td>7-14</td>
</tr>
<tr>
<td>7.6</td>
<td>FAMILY OF CARBON FIBERS FROM MESOPHASE PITCH CAPITAL INVESTMENT BY SECTION</td>
<td>7-15</td>
</tr>
<tr>
<td>7.7</td>
<td>OXIDIZED PITCH FIBER FROM AS-SPUN PITCH FIBER PRODUCTION COSTS</td>
<td>7-17</td>
</tr>
<tr>
<td>7.8</td>
<td>UNSIZED CARBON FIBER FROM MESOPHASE PITCH FIBER PRODUCTION COSTS</td>
<td>7-19</td>
</tr>
<tr>
<td>7.9</td>
<td>Sized Pitch-Based Carbon Fiber from Unsized Pitch-Based Carbon Fiber Production Costs</td>
<td>7-21</td>
</tr>
<tr>
<td>7.10</td>
<td>Sized Pitch-Based Graphite Fiber from Unsized Pitch-Based Carbon Fiber Production Costs</td>
<td>7-23</td>
</tr>
</tbody>
</table>