Abstract
Process Economics Program Report 15C
VINYL ACETATE MONOMER
(October 2012)

Vinyl acetate production from the acetoxylation of ethylene was developed and commercialized starting with the liquid-phase process. Because of equipment corrosion associated with the liquid-phase process, a vapor-phase acetoxylation technology was developed and commercialized in the 1970s. In vapor-phase acetoxylation, vinyl acetate monomer (VAM) is produced in the gas phase by reacting acetic acid, oxygen, and ethylene in the presence of an alumina- or silica-supported palladium catalyst in conjunction with gold along with an alkali metal. The acetoxylation of ethylene is carried out in a fixed-bed tubular reactor. Several companies have modified the vapor-phase acetoxylation process for their own manufacturing facilities. Licensed processes vary primarily in the preparation and composition of the catalyst, while some incorporate different separation schemes. Recently, a fluidized-bed reactor-based technology has become available using the same chemistry.

This report reviews the market conditions with a description of the major VAM markets and a list of the world VAM producers, along with their estimated plant capacities. The focus of this report is on recent improvements in technologies for vinyl acetate production and recovery since PEP Report 15B, Vinyl Acetate was issued in 1996. This report presents a comparative evaluation of commercial processes for producing vinyl acetate. Each vapor-phase design includes an acetoxylation reaction section, a recycle gas recovery section, and a vinyl acetate recovery section. The following process configurations were evaluated:

- The conventional Bayer vapor-phase process. The Bayer process, which is utilized in most VAM plants currently in operation, is presented for two different gold/palladium (Au/Pd) catalyst compositions and performance attributes, per-pass conversion and selectivity.
- The fluidized-bed reactor process, in which the reactants in the gas phase are contacted continuously over small-sized supported catalytic particles under fluidized conditions. The design is based on patents assigned to BP/Standard Oil.
- The vapor-phase acetoxylation process based on a separation scheme which results in higher energy efficiency. The design is based on recent patents assigned to Celanese.
- The acetylene-based VAM process. This process has attracted renewed interest in light of the increasing acetylene-based VAM capacity in China. The process is based on calcium carbide as the starting raw material.

Our analysis shows that recent advancements in the vapor-phase process have lower product values than conventional technologies, while the acetylene-based route has a slightly higher product value but remains competitive.
VINYL ACETATE MONOMER

by Jamie Lacson

October 2012

Santa Clara, California 95054
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS Chemical DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, Asia, South and Central America, the Middle East, Canada and Mexico.
CONTENTS

GLOSSARY

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIV</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
</tr>
</tbody>
</table>

2 SUMMARY

GENERAL ASPECTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
</tr>
</tbody>
</table>

TECHNICAL ASPECTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2</td>
</tr>
</tbody>
</table>

- Vinyl Acetate by Vapor-Phase Oxyacetylation of Ethylene with Au/Pd Catalysts
- Vinyl Acetate with Gas Dehydration Separation
- Vinyl Acetate via Fluidized Bed Reactor
- Vinyl Acetate from Acetylene

ECONOMIC ASPECTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-4</td>
</tr>
</tbody>
</table>

3 INDUSTRY STATUS

CAPACITY

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-3</td>
</tr>
</tbody>
</table>

CONSUMPTION

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-6</td>
</tr>
</tbody>
</table>

- Polyvinyl Acetates
 - Polyvinyl Acetates (Isolated)
 - Polyvinyl Alcohol
- Vinyl Acetate-Ethylene Copolymers
- Ethylene-Vinyl Alcohol Resins
- Ethylene-Vinyl Acetate Copolymers
- Other

PRICING

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-11</td>
</tr>
</tbody>
</table>

4 TECHNOLOGY REVIEW

PATENT LITERATURE

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
</tr>
</tbody>
</table>

PROCESS TECHNOLOGY

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-3</td>
</tr>
</tbody>
</table>

- From Ethylene, Acetic Acid and Oxygen
 - Fixed-Bed Reactor Process
 - Fluidized Bed Process
 - Reaction Conditions
 - Other Methods

CATALYSTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-12</td>
</tr>
</tbody>
</table>
CONTENTS (Continued)

Catalyst Performance ... 4-13
 Fluidized Bed Catalysts ... 4-19
 Conversion and Selectivity ... 4-20
 Commercial Catalysts ... 4-21
SEPARATION AND PURIFICATION .. 4-22
 VAM/Water Azeotrope .. 4-24
 Ethyl Acetate .. 4-24
 Acetaldehyde .. 4-26
 Acetates and Vinyl Acetate/Ethylene Polymers ... 4-26
INTEGRATION AND COPRODUCTION .. 4-30
FROM ACETYLENE AND ACETIC ACID .. 4-33
 Process Review .. 4-33
 Acetylene from Calcium Carbide .. 4-35
OTHER PROCESSES ... 4-37
 Ethylidene Diacetate Process .. 4-37
 Synthesis Gas-Based Processes ... 4-37

5 VINYL ACETATE VIA VAPOR-PHASE ACETOXYLATION AU/PD 0.5
 CATALYST ... 5-1
 PROCESS DESCRIPTION ... 5-2
 Section 100—Oxyacetylation .. 5-4
 Section 200—Gas Recovery ... 5-4
 Section 300—Product Recovery ... 5-5
 PROCESS DISCUSSION .. 5-13
 Feedstock .. 5-13
 Selection of Design Patent .. 5-14
 Process Yield .. 5-14
 Polymerization Inhibition .. 5-14
 Feedstock .. 5-14
 Materials of Construction ... 5-15
 Bulk/Tank Storage ... 5-15
 Energy Integration ... 5-15
 Carbon Dioxide Recovery ... 5-15
CONTENTS (Continued)

Waste Treatment .. 5-16
CAPITAL AND PRODUCTION COSTS .. 5-16
DISCUSSION OF CAPITAL COST AND PRODUCT VALUE ... 5-22

6 VINYL ACETATE VIA VAPOR-PHASE ACETOXYLATION AU/PD 0.9 CATALYST
PROCESS DESCRIPTION .. 6-1
Section 100—Oxycetylation .. 6-3
Section 200—Gas Recovery ... 6-3
Section 300—Product Recovery .. 6-4
PROCESS DISCUSSION ... 6-12
Feedstock .. 6-12
Selection of Design Patent ... 6-12
CAPITAL AND PRODUCTION COSTS ... 6-13

7 VINYL ACETATE VIA VAPOR PHASE WITH GAS DEHYDRATION SEPARATION
PROCESS DESCRIPTION ... 7-1
Section 100—Reaction .. 7-4
Section 200—Vapor Recovery .. 7-4
Section 300—Product Recovery .. 7-5
PROCESS DISCUSSION ... 7-12
CAPITAL AND PRODUCTION COSTS ... 7-12

8 VINYL ACETATE VIA FLUIDIZED BED REACTOR PROCESS 8-1
PROCESS DESCRIPTION ... 8-2
Section 100—Reaction .. 8-4
Section 200—Gas Recovery ... 8-4
Section 300—Vinyl Acetate Recovery .. 8-5
PROCESS DISCUSSION ... 8-12
Feedstock .. 8-12
Selection of Design Patent ... 8-12
Oxygen Content .. 8-13
Stream Factor ... 8-13
CONTENTS (Concluded)

Materials of Construction... 8-13
Bulk/Tank Storage... 8-13
Energy Integration... 8-13
Carbon Dioxide Recovery... 8-14
Waste Treatment.. 8-14
CAPITAL AND PRODUCTION COSTS.. 8-14

9 VINYL ACETATE FROM ACETYLENE VIA VAPOR-PHASE PROCESS..... 9-1
PROCESS DESCRIPTION .. 9-1
Acetylene Generation Section... 9-3
Reaction Section... 9-3
Recovery Section... 9-3
PROCESS DISCUSSION.. 9-11
Feedstock... 9-11
Selection of Design Bases.. 9-11
Process Yield.. 9-11
Polymerization Inhibition... 9-11
Waste Treatment... 9-11
Materials of Construction... 9-11
Bulk/Tank Storage.. 9-12
CAPITAL AND PRODUCTION COSTS.. 9-12
Discussion of Capital Cost and Product Value................................. 9-17

APPENDIX A PATENT SUMMARY TABLES... A-1
APPENDIX B DESIGN AND COST BASES... B-1
APPENDIX C PRODUCT DATASHEETS... C-1
APPENDIX D CITED REFERENCES... D-1
APPENDIX E PATENT REFERENCES BY COMPANY............................ E-1
APPENDIX F PROCESS FLOW DIAGRAMS... F-1
FIGURES

1.1 Vinyl Acetate or Ethenyl Acetate (IUPAC Name) .. 1-1
2.1 World Vinyl Acetate Supply ... 2-1
2.2 PEP Report 15C Patent Survey .. 2-2
2.3 Vinyl Acetate Total Fixed Capital .. 2-4
2.4 Vinyl Acetate Manufacturing Cost Summary ... 2-5
2.5 Vinyl Acetate Product Values and Feedstock Prices .. 2-8
3.1 World Production and Utilization .. 3-2
3.2 Historical Vinyl Acetate Capacity by Feedstock ... 3-4
3.3 Vinyl Acetate Demand by Region .. 3-7
3.4 Vinyl Acetate Historical Prices .. 3-13
3.5 Ethylene and Acetic Acid Prices ... 3-13
3.6 Calcium Carbide Historical Spot Prices ... 3-14
4.1 Vinyl Acetate Patents by Year .. 4-2
4.2 Vinyl Acetate Patents by Subject ... 4-2
4.3 Process-Related Patents 1970–2012 ... 4-3
4.4 Fixed-Bed (Tubular) Reactor .. 4-5
4.5 Vinyl Acetate Simplified Process Schematic Diagram .. 4-6
4.6 Fluidized-Bed Reactor ... 4-7
4.7 Fluidized-Bed Reaction Process Diagram ... 4-9
4.8 Vinyl Acetate Process Scheme ... 4-11
4.9 Oxygen Conversion and Selectivity .. 4-12
4.10 Catalyst-Related Patents 1970–2012 ... 4-13
4.11 Ethylene Concentration vs. Vinyl Acetate Selectivity ... 4-14
4.12 Ethylene Concentration vs. CO₂ Production Rate .. 4-15
4.13 Ethylene Selectivity to Vinyl Acetate vs. Gold/Palladium Ratio 4-18
4.14 Vinyl Acetate Space-Time Yield vs. Gold/Palladium Ratio ... 4-19
4.15 Conversion and Selectivity of Gold/Palladium Catalysts ... 4-20
4.16 Variant of Crude Vinyl Acetate Purification (A) .. 4-22
4.17 Variant of Crude Vinyl Acetate Purification (B) .. 4-23
4.18 Ternary Map (Mole Basis) .. 4-24
4.19 Number of Plates and Relative Volatility ... 4-25
4.20 Heavy Ends Processing System with an Evaporator .. 4-27
FIGURES (Continued)

4.21 Heavy Ends Processing System with a Flasher (A) ... 4-28
4.22 Heavy Ends Processing System with a Flasher (B) ... 4-29
4.23 Heavy Ends Processing System with a Direct Feed of Blow down Stream to Hydrolysis Reactor .. 4-29
4.24 Heavy Ends Processing without a Heavy Ends Column 4-30
4.25 Integrated Fluidized-Bed Reactor Process ... 4-31
4.26 Ethyl Acetate Purification .. 4-32
4.27 Vinyl Acetate Integration with Methanol and Acetic Acid 4-33
5.1 Vinyl Acetate Gas and Liquid Recycle Streams ... 5-1
5.2 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.48 Catalyst Process Flow Diagram .. F-3
5.3 Historical USGC Prices ... 5-13
5.4 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.48 Catalyst Effect of Capacity on Investment .. 5-21
5.5 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.48 Catalyst Effect of Operating Rate on Product Value .. 5-21
6.1 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.90 Catalyst Process Flow Diagram .. F-5
6.2 Flash Reactor Product Separation .. 6-12
6.3 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.90 Catalyst Effect of Capacity on Investment .. 6-18
6.4 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.90 Catalyst Effect of Operating Rate on Product Value .. 6-18
7.1 Predewatering Column Separation Step ... 7-1
7.2 Vinyl Acetate via Vapor Phase with Gas Dehydration Separation Process Flow Diagram .. F-7
7.3 Vinyl Acetate via Vapor Phase with Gas Dehydration Separation Effect of Capacity on Investment .. 7-17
7.4 Vinyl Acetate via Vapor Phase with Gas Dehydration Separation Effect of Operating Rate on Product Value .. 7-17
8.1 Fluidized-Bed Reaction Section ... 8-1
8.2 Vinyl Acetate via Fluidized-Bed Reactor Process Process Flow Diagram .. F-9
8.3 Historical USGC Prices ... 8-12
8.4 Vinyl Acetate via Fluidized-Bed Reactor Effect of Capacity on Investment 8-19
8.5 Vinyl Acetate via Fluidized-Bed Reactor
Effect of Operating Rate on Product Value ...8-19

9.1 Vinyl Acetate from Acetylene via Calcium Carbide
Process Flow Diagram ...F-11
TABLES

2.1 Au/Pd Catalyst Performance ... 2-5
2.2 Vinyl Acetate Process Economics .. 2-7
2.3 Vinyl Acetate Process Economics ($ per Metric Ton) 2-9
3.1 World Vinyl Acetate Summary ... 3-1
3.2 World Vinyl Acetate Monomer Capacity by Region 3-3
3.3 World Vinyl Acetate Producers as of Mid-2012 .. 3-5
3.4 Vinyl Acetate Feedstock Producers Capacity ... 3-6
3.5 Vinyl Acetate Consumption by Region .. 3-8
3.6 Vinyl Acetate Monomer Average Spot Price History 3-12
4.1 Vinyl Acetate-Related Patent Survey ... 4-1
4.2 Fluidized-Bed Reactor Condition and Feed Composition 4-10
4.3 Fluidized-Bed Reactor Selectivity .. 4-10
4.4 Au/Pd/K Catalyst Performance ... 4-17
4.5 Catalyst Performance vs. Temperature ... 4-17
4.6 Catalyst Performance vs. Oxygen Concentration 4-18
4.7 Vinyl Acetate Catalyst Performance vs. Composition 4-20
4.8 Sinopec CTV Catalysts ... 4-21
4.9 Vinyl Acetate Yields as Reported by DuPont ... 4-22
4.10 Vinyl Acetate Extractive Distillation Agents ... 4-26
4.11 Vinyl Acetate Formation ... 4-34
5.1 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.48 Catalyst Design Bases ... 5-3
5.2 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.48 Catalyst Stream Flows ... 5-7
5.3 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.48 Catalyst Major Equipment ... 5-10
5.4 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.48 Catalyst Utilities Summary ... 5-12
5.5 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.48 Catalyst Total Capital Investment ... 5-17
5.6 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.48 Catalyst Capital Investment by Section ... 5-18
5.7 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.48 Catalyst Variable Costs ... 5-19
TABLES (Continued)

5.8 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.48 Catalyst Production Costs ...5-20

6.1 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.90 Catalyst Design Bases ..6-2

6.2 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.90 Catalyst Stream Flows ..6-6

6.3 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.90 Catalyst Major Equipment ...6-9

6.4 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.90 Catalyst Utilities Summary ...6-11

6.5 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.90 Catalyst Total Capital Investment ...6-14

6.6 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.90 Catalyst Capital Investment by Section ..6-15

6.7 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.90 Catalyst Variable Costs ...6-16

6.8 Vinyl Acetate via Vapor-Phase Acetoxylation Au/Pd 0.90 Catalyst Production Costs ...6-17

7.1 Vinyl Acetate via Vapor Phase with Gas Dehydration Separation Design Bases ...7-3

7.2 Vinyl Acetate via Vapor Phase with Gas Dehydration Separation Stream Flows ...7-6

7.3 Vinyl Acetate via Vapor Phase with Gas Dehydration Separation Major Equipment ...7-9

7.4 Vinyl Acetate via Vapor Phase with Gas Dehydration Separation Utilities Summary ...7-11

7.5 Vinyl Acetate via Vapor Phase with Gas Dehydration Separation Total Capital Investment ...7-13

7.6 Vinyl Acetate via Vapor Phase with Gas Dehydration Separation Capital Investment by Section ..7-14

7.7 Vinyl Acetate via Vapor Phase with Gas Dehydration Separation Variable Costs ...7-15

7.8 Vinyl Acetate via Vapor Phase with Gas Dehydration Separation Production Costs ...7-16

8.1 Vinyl Acetate via Fluidized-Bed Reactor Design Bases ..8-3

8.2 Vinyl Acetate via Fluidized-Bed Reactor Stream Flows ..8-6
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Vinyl Acetate via Fluidized-Bed Reactor Major Equipment</td>
<td>8-9</td>
</tr>
<tr>
<td>8.4</td>
<td>Vinyl Acetate via Fluidized-Bed Reactor Utilities Summary</td>
<td>8-11</td>
</tr>
<tr>
<td>8.5</td>
<td>Vinyl Acetate via Fluidized-Bed Reactor Total Capital Investment</td>
<td>8-15</td>
</tr>
<tr>
<td>8.6</td>
<td>Vinyl Acetate via Fluidized-Bed Reactor Capital Investment by Section</td>
<td>8-16</td>
</tr>
<tr>
<td>8.7</td>
<td>Vinyl Acetate via Fluidized-Bed Reactor Variable Costs</td>
<td>8-17</td>
</tr>
<tr>
<td>8.8</td>
<td>Vinyl Acetate via Fluidized-Bed Reactor Production Costs</td>
<td>8-18</td>
</tr>
<tr>
<td>9.1</td>
<td>Vinyl Acetate from Acetylene via Calcium Carbide Design Bases</td>
<td>9-2</td>
</tr>
<tr>
<td>9.2</td>
<td>Vinyl Acetate from Acetylene via Calcium Carbide Stream Flows</td>
<td>9-5</td>
</tr>
<tr>
<td>9.3</td>
<td>Vinyl Acetate from Acetylene via Calcium Carbide Major Equipment</td>
<td>9-8</td>
</tr>
<tr>
<td>9.4</td>
<td>Vinyl Acetate from Acetylene via Calcium Carbide Utilities Summary</td>
<td>9-10</td>
</tr>
<tr>
<td>9.5</td>
<td>Vinyl Acetate from Acetylene via Calcium Carbide Total Capital Investment</td>
<td>9-13</td>
</tr>
<tr>
<td>9.6</td>
<td>Vinyl Acetate from Acetylene via Calcium Carbide Capital Investment by Section</td>
<td>9-14</td>
</tr>
<tr>
<td>9.7</td>
<td>Vinyl Acetate from Acetylene via Calcium Carbide Variable Costs</td>
<td>9-15</td>
</tr>
<tr>
<td>9.8</td>
<td>Vinyl Acetate from Acetylene via Calcium Carbide Production Costs</td>
<td>9-16</td>
</tr>
</tbody>
</table>