Abstract
Process Economics Program Report 153D
NON-METALLOocene SINGLE SITE CATALYSTS
(June 2002)

Until fairly recently, industry seemed less than enthusiastic about linear low-density polyethylene (LLDPE) and other polymer products from metallocene single site catalysts. Polymerization reactor stability problems, high costs of the metallocene cocatalysts, and difficulties experienced by film manufacturers in processing the metallocene derived polyethylene were factors discouraging initial market acceptance and widespread commercialization.

Recent advances in metallocene and non-metallocene single site catalysts appear to have overcome such problems however. While polymer productivity of the metallocenes appears to have improved considerably, improved catalyst support techniques appear to have solved stability problems initially experienced by gas phase fluid bed LLDPE production reactors. New generations of metallocene derived polyethylenes which are claimed to be easier to process are now being offered to film producers and other manufacturers.

Some of the new generations of non-metallocene catalysts such as those under development by Equistar may eliminate the need for expensive aluminoxane cocatalysts typically required by the metallocenes. Other new non-metallocene catalysts such as those under development by DuPont may eliminate the need for alpha-olefin comonomers typically needed for LLDPE production. Such advances increase the odds for further reductions in LLDPE production costs as well as further improvements in polymer product properties and production flexibility. Because of such advances, current market prospects for metallocenes and other single site catalysts appear to be booming with long-term growth rate projections of 20-30% per year.

In this report, we compare the production economics of two non-metallocene single site catalysts under development by Equistar and DuPont with that of a metallocene catalyst believed to be in widespread commercial use by Exxon. The comparative evaluation is performed from the standpoint of LLDPE production via gas phase fluid bed polymerization reactor technology, which currently appears to be the biggest single potential market for single site catalysts. The scope of our evaluation includes the costs of catalyst support preparation, cocatalyst and additive requirements, as well as an assessment of polymer product productivities as gleaned from the recent patent literature.
CONTENTS

1 INTRODUCTION ... 1-1

2 SUMMARY ... 2-1
 MARKETS .. 2-1
 ADVANTAGES OF SSC’S .. 2-1
 COMPARATIVE ECONOMICS .. 2-2
 PROCESS SCHEME .. 2-2
 PATENT SUMMARY, CITED REFERENCES, AND DESIGN & COST BASES 2-3
 ACKNOWLEDGEMENTS .. 2-3

3 CONCLUSION .. 3-1

4 INDUSTRY STATUS .. 4-1
 ADVANTAGES OF SSC’S FOR POLYETHYLENE PRODUCTION 4-2
 PROJECTED MARKET GROWTH RATE 4-3
 COMMERCIALIZATION OF SINGLE SITE CATALYSTS 4-4
 COMMERCIAL REACTOR SYSTEM TECHNOLOGIES 4-4
 High Pressure Processes ... 4-5
 Solution Phase Processes ... 4-5
 Slurry Phase Processes ... 4-5
 Gas Phase Processes ... 4-6
 Advances in Condensed Mode Gas Phase Reactor Technologies 4-6
 Applicability of SSCs to Commercial Polymerization Technologies 4-7
 Commercial Catalyst Supports ... 4-8
 Cocatalyst Requirements ... 4-9
 SECOND GENERATION SINGLE SITE CATALYST DEVELOPMENTS 4-9
 CURRENT STATUS OF SINGLE SITE CATALYST COMMERCIALIZATION 4-12
 INDUSTRY STRUCTURE ... 4-19
CONTENTS (Continued)

Producers of Single Site Catalyst Systems ... 4-20

PRODUCER PROFILES .. 4-23

Akzo Nobel ... 4-23
Albemarle Corporation .. 4-23
Asahi Glass Company .. 4-24
Boulder Scientific Company ... 4-24
BP Amco Chemicals (Formerly BP Chemicals) ... 4-24
Engelhard Corporation .. 4-25
Fine Organic .. 4-25
Kanto Chemical Co. ... 4-25
Nippon Shokubai Co., Ltd. ... 4-25
Norquay Technology Inc. ... 4-26
Peroxid-Chemie GmbH .. 4-26
Phillips Petroleum ... 4-26
Single-Site Catalysts L.L.C. .. 4-26
Targor GmbH .. 4-27
Univation Technologies ... 4-27
Witco Corporation ... 4-27
W.R. Grace (Grace Davison) .. 4-28

5 TECHNOLOGY REVIEW .. 5-1

METALLOCENE CATALYSTS .. 5-1

METALLOCENE COMPLEXES ... 5-2

Metal Centers .. 5-3

Group IV (Ti, Zr, Hf) .. 5-3
Group V (V, Nb, Ta) ... 5-3
Group VI (Cr, Mo, W) .. 5-3
Group III and the Lanthanides (Sc, Y, La) .. 5-3
<table>
<thead>
<tr>
<th>CONTENTS (Continued)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinides (Th, U)</td>
<td>5-3</td>
</tr>
<tr>
<td>Ligands of the Metallocene Complexes</td>
<td>5-4</td>
</tr>
<tr>
<td>Metallocene Structural Families</td>
<td>5-5</td>
</tr>
<tr>
<td>Cocatalysts</td>
<td>5-7</td>
</tr>
<tr>
<td>Aluminoxanes</td>
<td>5-8</td>
</tr>
<tr>
<td>Trialkylaluminums and Other Cocatalysts</td>
<td>5-8</td>
</tr>
<tr>
<td>Control of Polymer Molecular Structure</td>
<td>5-9</td>
</tr>
<tr>
<td>Product Molecular Weight</td>
<td>5-9</td>
</tr>
<tr>
<td>Molecular Weight Distribution</td>
<td>5-10</td>
</tr>
<tr>
<td>EXXON METALLOCENE SSC’S</td>
<td>5-10</td>
</tr>
<tr>
<td>Gas-Phase Polymerization</td>
<td>5-11</td>
</tr>
<tr>
<td>Unbridged Zirconocenes</td>
<td>5-12</td>
</tr>
<tr>
<td>Monocyclopentadienyl Titanium Complexes</td>
<td>5-14</td>
</tr>
<tr>
<td>Late TM Complexes</td>
<td>5-14</td>
</tr>
<tr>
<td>Slurry Polymerization</td>
<td>5-16</td>
</tr>
<tr>
<td>Unbridged Zirconocenes and Hafnocenes</td>
<td>5-17</td>
</tr>
<tr>
<td>Monocyclopentadienyl TM Complexes</td>
<td>5-19</td>
</tr>
<tr>
<td>Late TM Complexes</td>
<td>5-19</td>
</tr>
<tr>
<td>High-Pressure Polymerization</td>
<td>5-19</td>
</tr>
<tr>
<td>Bridged Zirconocenes and Hafnocenes</td>
<td>5-20</td>
</tr>
<tr>
<td>Monocyclopentadienyl Titanium Complexes</td>
<td>5-22</td>
</tr>
<tr>
<td>Unbridged Zirconocenes</td>
<td>5-24</td>
</tr>
<tr>
<td>Solution Phase Polymerization</td>
<td>5-24</td>
</tr>
<tr>
<td>Monocyclopentadienyl Titanium Complexes</td>
<td>5-25</td>
</tr>
<tr>
<td>Bridged Metalloccenes</td>
<td>5-26</td>
</tr>
<tr>
<td>Unbridged Metalloccenes</td>
<td>5-28</td>
</tr>
<tr>
<td>Late TM Complexes</td>
<td>5-30</td>
</tr>
<tr>
<td>EQUISTAR CATALYST FAMILIES</td>
<td>5-30</td>
</tr>
</tbody>
</table>
CONTENTS (Continued)

Boratabenzene Family .. 5-30
Azaborolinyl Family ... 5-31
Pyridinyl and Quinolinyl Family .. 5-31
Pyrrole Family ... 5-31
DUPONT IRON BASED CATALYST FAMILY ... 5-32
SUPPORTING ALUMOXANE ACTIVATED SINGLE SITE CATALYSTS 5-33
SIMPLIFIED POLYMERIZATION KINETICS .. 5-34
POLYMERIZATION MECHANISMS WITH METALLOCENES 5-34
Cocatalyst Roles .. 5-35
FLUID BED POLYMERIZATION PARTICLE MORPHOLOGY 5-35

6 PRODUCTION OF SUPPORTED EQUISTAR NON-METALLOCENE SINGLE SITE CATALYST .. 6-1

BACKGROUND .. 6-1
QTB Catalyst Advantages .. 6-2
QTB Ethylene Polymerizations Productivity ... 6-2
QTB Catalyst Support Preparation ... 6-3
PROCESS CHEMISTRY .. 6-4
QTB Catalyst Synthesis ... 6-4
Reaction Step 1: QTC Intermediate Synthesis ... 6-4
Reaction Step 2: QTB Catalyst Synthesis ... 6-5
Grignard Reaction: BMC Intermediate Synthesis .. 6-5
Assumed Silica Support Dehydration Chemistry .. 6-5
Unhydrated Silica: SiO₂ (Silicon Dioxide) ... 6-6
Hydrated Silica: SiO₂•H₂O ... 6-6
First Silica Dehydration Reaction: HMDSZ Treatment ... 6-7
Second Silica Dehydration Reaction: Calcination ... 6-7
PROCESS DESCRIPTION ... 6-7
Section 100 - Unsupported Catalyst Synthesis ... 6-8
CONTENTS (Continued)

Step 1a: Dissolution (QOH) Raw Material .. 6-8
Step 1b: Synthesis of 8-Quinolinoxytitanium Trichloride (QTC) Intermediate 6-8
Step 1c: QTC Drying ... 6-8
Step 1d: Heptane Solvent Purification... 6-8
Step 2a: Dissolution of QTC in EDC Solvent .. 6-9
Step 2b: Synthesis of Unsupported QTB Catalyst .. 6-9
Step 2c: QTB & Reaction Solvent Purification .. 6-9
Step 2d: Synthesis of Benzyl Magnesium Chloride (BMC) 6-9

Section 200 - Supported Catalyst Preparation ... 6-9
Step 3a: Application of HMDSZ to Silica Gel .. 6-9
Step 3b: Treated Silica Aging.. 6-9
Step 3c: Treated Silica Calcination ... 6-10
Step 4a: Mixing of Support with QTB Catalyst & DBM Modifier...................... 6-10
Step 4b: Recovery of Supported Catalyst Product.. 6-10
Step 4c: Support Solvent Purification & TEAL Cocatalyst Introduction 6-10
Polymerization Reactor Catalyst Feed Processing .. 6-10

PROCESS DISCUSSION ... 6-11

CAPITAL INVESTMENT AND PRODUCTION COSTS ... 6-22

Cost of Catalyst per Unit LLDPE Production .. 6-22

7 PRODUCTION OF SUPPORTED DUPONT NON-METALLOCENE SINGLE SITE CATALYST .. 7-1

BACKGROUND .. 7-1

PROCESS CHEMISTRY ... 7-2

DPDPID Catalyst Synthesis ... 7-2
 Reaction Step 1: DPDP Intermediate Synthesis ... 7-3
 Reaction Step 2: Synthesis of Polymerization Catalyst DPDPID....................... 7-3

Synthesis of DPDP Intermediate ... 7-4

Synthesis of Polymerization Catalyst DPDPID ... 7-4

DPDPID Ethylene Polymerization Productivity ... 7-5
CONTENTS (Continued)

AVAILABILITY, APPLICATIONS, AND SYNTHESIS OF DAP & DIPA RAW MATERIALS ... 7-6

2,6-Diisopropyl Aniline (DIPA) .. 7-7

Synthesis Routes for DIPA ... 7-7

Other Potential Uses for 2,6-Dialkyl Anilines .. 7-7

2,6-Diacetylpyridine (DAP) ... 7-7

Synthesis Routes for DAP ... 7-7

Other Potential Uses for DAP ... 7-8

PROCESS DESCRIPTION ... 7-8

Section 100 - Unsupported Catalyst Synthesis .. 7-9

Step 1a: Catalyst Precursor (DPDP) Preparation Reaction & Crystallization 7-9

Step 1b: DPDP Drying ... 7-9

Step 1c: Methanol Solvent Recovery .. 7-9

Step 1d: Methanol Dessication & DIPA Recovery ... 7-9

Step 1e: DIPA Purification ... 7-10

Step 2a: Catalyst (DPDPID) Preparation Reaction & Crystallization 7-10

Step 2b: DPDPID Drying ... 7-10

Step 2c: THF Solvent Recovery .. 7-10

Step 2d: Recycle THF Desiccation .. 7-10

Section 200 - Supported Catalyst Preparation ... 7-11

Step 3a: Silica Support & Desiccant Adsorbent Drying .. 7-11

Step 3b: Catalyst Dissolution in Toluene .. 7-11

Step 3c: Preparation of DPDPID/MAO Precursor Solutions 7-11

Step 4a: Mixing of Support with Catalyst Constituents ... 7-11

Step 4b: Recovery of Supported Catalyst Product ... 7-11

Step 4c: Support Solvent Purification & Supported Catalyst Antifoulant Treatment ... 7-11

Polymerization Reactor Catalyst Feed Processing ... 7-12

PROCESS DISCUSSION ... 7-12

CAPITAL INVESTMENT AND PRODUCTION COSTS ... 7-21
PRODUCTION OF SUPPORTED EXXON METALLOCENE SINGLE SITE CATALYST ... 8-1

BACKGROUND ... 8-1

PROCESS CHEMISTRY .. 8-3

Reaction Step 1: Thermal Depolymerization ... 8-3

Reaction Step 2: Deprotonation .. 8-4

Reaction Step 3: Alkylation .. 8-4

Reaction Step 4: Deprotonation .. 8-4

Reaction Step 5: Metallocene Formation ... 8-5

Summary of Five Step Metallocene Synthesis Stoichiometry .. 8-5

Commercial Availability and Recovery of CPD and DCPD .. 8-6

PROCESS DESCRIPTION .. 8-8

Section 100 - Unsupported Catalyst Synthesis .. 8-9

Step 1: Thermal Depolymerization .. 8-9

Step 2: Deprotonation ... 8-9

Step 3a: Alkylation ... 8-9

Step 3b: Alkylation Product Recovery ... 8-9

Step 4: Deprotonation ... 8-9

Step 5a: Metallocene Formation .. 8-9

Step 5b: Metallocene Crystallization .. 8-10

Step 5c: Metallocene Drying ... 8-10

Step 5d: Heptane Solvent Recovery ... 8-10

Section 100 Waste Handling ... 8-10

Section 200 - Supported Catalyst Preparation .. 8-10

Step 6a: Silica Support Drying .. 8-10

Step 6b: Metallocene Dissolution in Toluene ... 8-10

Step 6c: Preparation of Metallocene / MAO Precursor Solution 8-10

Step 7a: Mixing of Support with Catalyst Constituents ... 8-10
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Simplified Block Flow Diagrams for Supported Equistar, DuPont, and Exxon SSC Production Processes</td>
<td>2-6</td>
</tr>
<tr>
<td>5.1</td>
<td>The Iron Sandwich - First of the Metallocenes</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2</td>
<td>Common Metallocene Catalysts</td>
<td>5-2</td>
</tr>
<tr>
<td>5.3</td>
<td>Primary Cocatalysts from Metallocenes</td>
<td>5-7</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of Catalyst on the Molecular Weight of Polyethylene Homopolymer</td>
<td>5-29</td>
</tr>
<tr>
<td>6.1</td>
<td>Estimated Equistart Catalyst Productivity Vs. Cocatalyst: Catalyst Ratio for Typical Fluid Bed Polymerization Reactor Conditions</td>
<td>6-3</td>
</tr>
<tr>
<td>6.2</td>
<td>Production of Supported Equistar Non-Metallocene Single site Catalyst Process Flow Diagram</td>
<td>D-3</td>
</tr>
<tr>
<td>6.3</td>
<td>Equistar Weekly Batch Critical Path Production Schedule</td>
<td>6-21</td>
</tr>
<tr>
<td>7.1</td>
<td>Estimated DuPont Catalyst Productivity Vs. Cocatalyst: Catalyst Ratio for Typical Fluid Bed Polymerization Conditions</td>
<td>7-6</td>
</tr>
<tr>
<td>7.2</td>
<td>Production of Supported DuPont Non-Metallocene Single Site Catalyst Process Flow Diagram</td>
<td>D-7</td>
</tr>
<tr>
<td>7.3</td>
<td>DuPont Weekly Batch Critical Path Production Schedule</td>
<td>7-20</td>
</tr>
<tr>
<td>8.1</td>
<td>Production of Supported Exxon Metallocene Single Site Catalyst Process Flow Diagram</td>
<td>D-13</td>
</tr>
<tr>
<td>8.2</td>
<td>Exxon Weekly Batch Critical Path Production Schedule</td>
<td>8-21</td>
</tr>
</tbody>
</table>
TABLES

2.1 Comparative Product Values for Supported Equistar, DuPont, and Exxon SSCs for Gas Phase LLDPE Production .. 2-4
2.2 Comparative SSC Production Costs Per Lb of LLDPE Produced at Same SSC Production Capacities .. 2-5
2.3 Comparative SSC Production Costs Per Lb of LLDPE Produced at Similar LLDPE Production Capacities .. 2-5
4.1 Metalloccenes Deployment Potential by Reactor Configuration 4-8
4.2 Current Commercial Polyethylene Reactor / Product Technologies............... 4-13
4.3 Existing Metalloccene Based Polymer Facilities, as of 1997 4-15
4.4 Estimated Metalloccene Based Polymers Facility Additions, 1998-2000 4-17
4.5 U.S. Producers of Single-Site Ethylene Polymerization Catalysts.................. 4-21
4.6 European Producers of Single-Site Ethylene Polymerization Catalysts 4-22
4.7 Japanese Producers of Single-Site Polymerization Catalysts a 4-23
5.1 Iron Based Non-Metallocene Single Site Catalysts Patent Summary A-3
5.2 Factors that Affect Polymer Molecular Weight .. 5-9
5.3 Factors that Affect Polymer MWD .. 5-10
6.1 Production of Supported Equistar Non-Metallocene Single Site Catalyst Design Bases and Assumptions ... 6-12
6.2 Production of Supported Equistar Non-Metallocene Single Site Catalyst Stream Flows .. 6-13
6.3 Production of Supported Equistar Non-Metallocene Single Site Catalyst Major Equipment ... 6-19
6.4 Production of Supported Equistar Non-Metallocene Single Site Catalyst Total Capital Investment ... 6-23
6.5 Production of Supported Equistar Non-Metallocene Single Site Catalyst Capital Investment by Section .. 6-24
6.6 Production of Supported Equistar Non-Metallocene Single Site Catalyst Production Costs .. 6-25
7.1 Production of Supported DuPont Non-Metallocene Single Site Catalyst Design Bases and Assumptions ... 7-13
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Production of Supported DuPont Non-Metalloocene Single Site Catalyst Stream Flows</td>
<td>7-14</td>
</tr>
<tr>
<td>7.3</td>
<td>Production of Supported DuPont Non-Metalloocene Single Site Catalyst Major Equipment</td>
<td>7-18</td>
</tr>
<tr>
<td>7.4</td>
<td>Production of Supported DuPont Non-Metalloocene Single Site Catalyst Total Capital Investment</td>
<td>7-22</td>
</tr>
<tr>
<td>7.5</td>
<td>Production of Supported DuPont Non-Metalloocene Single Site Catalyst Capital Investment by Section</td>
<td>7-23</td>
</tr>
<tr>
<td>7.6</td>
<td>Production of Supported DuPont Non-Metalloocene Single Site Catalyst Production Costs</td>
<td>7-24</td>
</tr>
<tr>
<td>8.1</td>
<td>Production of Supported Exxon Metallocene Single Site Catalyst Design Bases and Assumptions</td>
<td>8-12</td>
</tr>
<tr>
<td>8.2</td>
<td>Production of Supported Exxon Metallocene Single Site Catalyst Stream Flows</td>
<td>8-13</td>
</tr>
<tr>
<td>8.3</td>
<td>Production of Supported Exxon Metallocene Single Site Catalyst Major Equipment</td>
<td>8-19</td>
</tr>
<tr>
<td>8.4</td>
<td>Production of Supported Exxon Metallocene Single Site Catalyst Total Capital Investment</td>
<td>8-23</td>
</tr>
<tr>
<td>8.5</td>
<td>Production of Supported Exxon Metallocene Single Site Catalyst Capital Investment by Section</td>
<td>8-24</td>
</tr>
<tr>
<td>8.6</td>
<td>Production of Supported Exxon Metallocene Single Site Catalyst Production Costs</td>
<td>8-25</td>
</tr>
</tbody>
</table>