Abstract

Process Economics Program Report No. 141A

POLYETHYLENE TEREPTHALATE BOTTLES AND BOTTLE RESINS
(May 1993)

PET bottles are manufactured from PET bottle-grade resin by a sequential injection molding and blow-molding process. The bottle-grade resin, which is characterized by a high molecular weight (e.g. an intrinsic viscosity (IV) of 0.72-0.84) and low acetaldehyde content (e.g., <3 ppm), is made by solid-state polymerization of the lower molecular weight (e.g., IV 0.6) PET, which is made by melt-phase polymerization. The demand for PET bottles and containers in the last decade has grown remarkably. For example, since 1980 the plant capacity in the United States for PET solid state resin has almost tripled, and now stands at about 2 billion lb/yr (900,000 t/yr).

This report provides preliminary process designs and cost estimates for the production of polyethylene terephthalate (PET) by melt-phase polymerization, the conversion of this PET to bottle-grade PET by solid-state polymerization, and conversion of the bottle-grade PET into one-piece 2-liter beverage bottles by the two-stage injection molding/blow-molding process. The report also includes reviews of the pertinent patents on the various manufacturing processes, a section on the current status of the industry, and a section that briefly summarizes the chemistry and technology of the manufacturing processes.

The report is useful for manufacturers that are considering entering this business or for manufacturers that are considering vertical integration.
CONTENTS

1 INTRODUCTION 1-1

2 SUMMARY 2-1
 PRODUCTION/MARKETING ASPECTS 2-1
 PROCESS ECONOMICS 2-2
 TECHNICAL ASPECTS 2-2
 - PET from TPA and EG by Melt-Phase Polymerization 2-3
 - PET From DMT and EG by Melt-Phase Polymerization 2-3
 - Bottle-Grade PET by Solid-State Polymerization 2-4
 - One-piece 2-liter PET Beverage Bottles by the Two-Stage Process 2-4

3 INDUSTRY STATUS 3-1
 HISTORICAL 3-1
 PET PRODUCTS 3-1
 PLANT CAPACITIES 3-2
 PRODUCTION, DEMAND DISTRIBUTION, AND WORLD TRADE 3-3
 PRICES 3-3
 GROWTH 3-3
 RECYCLING 3-4

4 CHEMISTRY AND TECHNOLOGY 4-1
 MELT-PHASE POLYMERIZATION 4-1
 SOLID-PHASE POLYMERIZATION 4-5
 INJECTION MOLDING 4-6
 STRETCH BLOW-MOLDING 4-6

5 PET BY MELT-PHASE POLYMERIZATION 5-1
 REVIEW OF PROCESSES 5-1
 - Reaction or Process Conditions 5-1
 - Esterification Catalysts 5-2
 - Transesterification Catalysts 5-3
 - Polymerization Catalysts and Additives 5-3
 - Equipment Design 5-3
CONTENTS (Continued)

5 PET BY MELT-PHASE POLYMERIZATION (Concluded)

REVIEW OF PROCESSES (Concluded)
- Special Additives 5-4
- Ethylene Glycol Purification 5-4
- Equipment Cleaning Methods 5-4

PROCESS DESCRIPTION - PET FROM TPA 5-4

PROCESS DISCUSSION - PET FROM TPA AND EG 5-14
- Plant Capacity 5-14
- Final Polymerization Reactor 5-14
- Rundown Bins and Blending Bins 5-14
- Heating System 5-14
- Polymer Filters 5-14
- Distillation of Recovered EG 5-14
- Materials of Construction 5-15
- Waste Streams 5-15

CAPITAL AND PRODUCTION COSTS - PET FROM TPA AND EG 5-15

PROCESS DESCRIPTION - PET FROM DMT AND EG 5-20

PROCESS DISCUSSION - PET FROM DMT AND EG 5-32
- Bottle-Grade PET 5-32
- Materials of Construction 5-32
- Waste Streams 5-32
- Methanol 5-32

CAPITAL AND PRODUCTION COSTS - PET FROM DMT 5-32

COST COMPARISON - PET FROM TPA AND DMT 5-33

COST COMPARISON - CASES WITH AND WITHOUT DISTILLATION 5-33

6 PET BY SOLID-STATE POLYMERIZATION 6-1

REVIEW OF PROCESSES 6-1

PROCESS DESCRIPTION 6-2

PROCESS DISCUSSION 6-8
CONTENTS (Continued)

6 PET BY SOLID-STATE POLYMERIZATION (Concluded)
 Plant Size 6-8
 Reactors 6-8
 Ethylene Glycol 6-9
 Materials of Construction 6-9
 Waste Streams 6-9
 CAPITAL AND PRODUCTION COSTS 6-11
 OTHER PROCESSES 6-11
 CATALYTIC PURIFICATION OF NITROGEN 6-12
 EXTRUSION GRADE PET 6-13

7 PET BOTTLE MANUFACTURE 7-1
 REVIEW OF PROCESSES 7-1
 PROCESS DESCRIPTION 7-1
 PROCESS DISCUSSION 7-9
 Plant Capacity 7-9
 Bottle-Grade PET 7-9
 PET Storage Silos and Pneumatic Conveyors 7-9
 Blending and Coloring 7-9
 Auxiliary Equipment for Injection Molding Machines 7-10
 Surge Capacity 7-10
 Auxiliary Equipment for the Blow-Molding Machine 7-10
 Bottle Inspection 7-11
 Labeling Machine 7-11
 Bulk Palletizing Equipment 7-11
 Materials of Construction 7-11
 Waste Streams 7-11
 Utility Requirements 7-12
 Product Storage 7-12
 Product Storage 7-12
 Integrated Facilities 7-12
CONTENTS (Concluded)

7 PET BOTTLE MANUFACTURE (Concluded)

CAPITAL AND PRODUCTION COSTS 7-12
Direct and Indirect Installation Costs 7-13
PET Charge-in Value and PET Bottle Price 7-13
Refrigeration 7-13
Maintenance, Operating Manpower, and Rates 7-13
G&A, Sales, and Research Expense 7-14
Labels, Strapping, Stretch Wrap Film, and Pallets 7-14
Relative Importance of Production Cost Items 7-14
Effect of Capacity on Production Costs 7-15
One-Stage Process 7-15
Extrusion Blow-Molding 7-15

APPENDIX A: PATENT SUMMARY TABLES A-1
APPENDIX B: DESIGN AND COST BASES B-1
APPENDIX C: EQUIPMENT SUPPLIERS C-1
APPENDIX D: CITED REFERENCES D-1
APPENDIX E: PATENT REFERENCES BY COMPANY E-1
APPENDIX F: PROCESS FLOW DIAGRAMS F-1
ILLUSTRATIONS

5.1 POLYETHYLENE TEREPHTHALATE FROM TEREPTHALIC ACID AND ETHYLENE GLYCOL
PROCESS FLOW DIAGRAM F-3

5.2 POLYETHYLENE TEREPHTHALATE FROM DIMETHYL TEREPTHALATE AND ETHYLENE GLYCOL
PROCESS FLOW DIAGRAM F-5

6.1 POLYETHYLENE TEREPHTHALATE (IV = 0.82)
(BOTTLE GRADE) FROM PET, IV = 0.62
PROCESS FLOW DIAGRAM F-7

7.1 POLYETHYLENE TEREPHTHALATE BOTTLE MANUFACTURE
PROCESS FLOW DIAGRAM F-9
TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>MELT-PHASE POLYMERIZATION COST SUMMARY</td>
<td>2-6</td>
</tr>
<tr>
<td>2.2</td>
<td>SOLID-STATE POLYMERIZATION COST SUMMARY</td>
<td>2-7</td>
</tr>
<tr>
<td>2.3</td>
<td>PET 2-LITER BOTTLE MANUFACTURE COST SUMMARY</td>
<td>2-8</td>
</tr>
<tr>
<td>3.1</td>
<td>PET SOLID-STATE RESINS PLANT CAPACITIES-UNITED STATES</td>
<td>3-6</td>
</tr>
<tr>
<td>3.2</td>
<td>PET SOLID-STATE RESINS PLANT CAPACITIES-WESTERN EUROPE</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3</td>
<td>PET SOLID-STATE RESINS PLANT CAPACITIES-JAPAN</td>
<td>3-9</td>
</tr>
<tr>
<td>3.4</td>
<td>PET SOLID-STATE RESINS PLANT CAPACITIES-OTHER COUNTRIES</td>
<td>3-10</td>
</tr>
<tr>
<td>4.1</td>
<td>CHEMISTRY AND TECHNOLOGY ARTICLES ON PET MELT POLYMERIZATION OR RELATED SUBJECTS</td>
<td>4-4</td>
</tr>
<tr>
<td>4.2</td>
<td>CHEMISTRY AND TECHNOLOGY ARTICLES RELATED TO BOTTLE MANUFACTURE</td>
<td>4-8</td>
</tr>
<tr>
<td>5.1</td>
<td>PET BY MELT-PHASE POLYMERIZATION PATENT SUMMARY</td>
<td>A-3</td>
</tr>
<tr>
<td>5.2</td>
<td>PET FROM TEREPHTHALIC ACID AND ETHYLENE GLYCOL WITH DISTILLATION MAJOR EQUIPMENT</td>
<td>5-7</td>
</tr>
<tr>
<td>5.3</td>
<td>PET FROM TEREPHTHALIC ACID AND ETHYLENE GLYCOL WITH DISTILLATION UTILITIES SUMMARY</td>
<td>5-9</td>
</tr>
<tr>
<td>5.4</td>
<td>PET FROM TEREPHTHALIC ACID AND ETHYLENE GLYCOL STREAM FLOWS</td>
<td>5-10</td>
</tr>
<tr>
<td>5.5</td>
<td>PET FROM TEREPHTHALIC ACID AND ETHYLENE GLYCOL ESTERIFICATION REACTOR CONDITIONS</td>
<td>5-12</td>
</tr>
<tr>
<td>5.6</td>
<td>PET FROM TEREPHTHALIC ACID AND ETHYLENE GLYCOL CONDITIONS IN PRE- AND FINAL POLYCONDENSATION REACTORS</td>
<td>5-13</td>
</tr>
<tr>
<td></td>
<td>TABLES (Continued)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>5.7</td>
<td>PET FROM TEREPTHALIC ACID AND ETHYLENE GLYCOL WASTE STREAMS</td>
<td>5-16</td>
</tr>
<tr>
<td>5.8</td>
<td>PET FROM TEREPTHALIC ACID AND ETHYLENE GLYCOL WITH DISTILLATION TOTAL CAPITAL INVESTMENT</td>
<td>5-17</td>
</tr>
<tr>
<td>5.9</td>
<td>PET FROM TEREPTHALIC ACID AND ETHYLENE GLYCOL WITH DISTILLATION PRODUCTION COSTS</td>
<td>5-18</td>
</tr>
<tr>
<td>5.10</td>
<td>PET FROM DIMETHYL TEREPTHALATE AND ETHYLENE GLYCOL WITH DISTILLATION MAJOR EQUIPMENT</td>
<td>5-23</td>
</tr>
<tr>
<td>5.11</td>
<td>PET FROM DIMETHYL TEREPTHALATE AND ETHYLENE GLYCOL WITH DISTILLATION UTILITIES SUMMARY</td>
<td>5-26</td>
</tr>
<tr>
<td>5.12</td>
<td>PET FROM DIMETHYL TEREPTHALATE AND ETHYLENE GLYCOL STREAM FLOWS</td>
<td>5-27</td>
</tr>
<tr>
<td>5.13</td>
<td>PET FROM DIMETHYL TEREPTHALATE AND ETHYLENE GLYCOL SUMMARY OF TRANSESTERIFICATION REACTION CONDITIONS</td>
<td>5-30</td>
</tr>
<tr>
<td>5.14</td>
<td>PET FROM DIMETHYL TEREPTHALATE AND ETHYLENE GLYCOL SUMMARY OF PRE- AND FINAL POLYCONDENSATION REACTOR CONDITIONS</td>
<td>5-31</td>
</tr>
<tr>
<td>5.15</td>
<td>PET FROM DIMETHYL TEREPTHALATE AND ETHYLENE GLYCOL ALTERNATIVE PROCESS CONDITIONS</td>
<td>5-34</td>
</tr>
<tr>
<td>5.16</td>
<td>PET FROM DIMETHYL TEREPTHALATE AND ETHYLENE GLYCOL WASTE STREAMS</td>
<td>5-35</td>
</tr>
<tr>
<td>5.17</td>
<td>PET FROM DIMETHYL TEREPTHALATE AND ETHYLENE GLYCOL WITH DISTILLATION TOTAL CAPITAL INVESTMENT</td>
<td>5-36</td>
</tr>
<tr>
<td>5.18</td>
<td>PET FROM DIMETHYL TEREPTHALATE AND ETHYLENE GLYCOL WITH DISTILLATION PRODUCTION COSTS</td>
<td>5-37</td>
</tr>
<tr>
<td>6.1</td>
<td>PET BY SOLID-STATE POLYMERIZATION PATENT SUMMARY</td>
<td>A-22</td>
</tr>
</tbody>
</table>
TABLES (Continued)

6.2 BOTTLE-GRADE PET (IV 0.82) VIA SOLID-STATE POLYMERIZATION, NITROGEN SCRUBBING, BEPEX CONFIGURATION, MAJOR EQUIPMENT

6.3 BOTTLE-GRADE PET (IV 0.82) VIA SOLID-STATE POLYMERIZATION, NITROGEN SCRUBBING, BEPEX CONFIGURATION, UTILITIES SUMMARY

6.4 BOTTLE-GRADE PET (IV 0.82) FROM PET (IV 0.62) STREAM FLOWS

6.5 PET BY SOLID-STATE POLYMERIZATION, WASTE STREAMS

6.6 BOTTLE-GRADE PET (IV 0.82) VIA SOLID-STATE POLYMERIZATION, NITROGEN SCRUBBING, BEPEX CONFIGURATION, TOTAL CAPITAL INVESTMENT

6.7 BOTTLE-GRADE PET (IV 0.82) VIA SOLID-STATE POLYMERIZATION, NITROGEN SCRUBBING, BEPEX CONFIGURATION, PRODUCTION COSTS

6.8 PET BY SOLID-STATE POLYMERIZATION, COST COMPARISON OF NITROGEN PURIFICATION METHODS (PRODUCT IV 0.72)

6.9 BOTTLE-GRADE PET (IV 1.04) VIA SOLID-STATE POLYMERIZATION, NITROGEN SCRUBBING, BEPEX CONFIGURATION, TOTAL CAPITAL INVESTMENT

6.10 BOTTLE-GRADE PET (IV 1.04) VIA SOLID-STATE POLYMERIZATION, NITROGEN SCRUBBING, BEPEX CONFIGURATION, PRODUCTION COSTS

7.1 PET COPOLYMERS AND BLENDS, PATENT SUMMARY

7.2 PET MULTILAYER CONTAINERS, PATENT SUMMARY

7.3 PET BOTTLE COATINGS, PATENT SUMMARY

7.4 PET - MISCELLANEOUS SUBJECTS, PATENT SUMMARY
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>POLYETHYLENE TEREPHTHALATE, BOTTLE MANUFACTURE DESIGN BASES</td>
<td>7-3</td>
</tr>
<tr>
<td>7.6</td>
<td>2-LITER BIAxiaLLY ORIenTED PET BOTTLES MADE BY TWO-STAGE INJECTION STRETCH BLOW-MOLD PROCESS MAJOR EQUIPMENT</td>
<td>7-6</td>
</tr>
<tr>
<td>7.7</td>
<td>2-LITER BIAxiaLLy ORIenTED PET BOTTLES MADE BY TWO-STAGE INJECTION STRETCH BLOW-MOLD PROCESS UTILITIES SUMMARY</td>
<td>7-7</td>
</tr>
<tr>
<td>7.8</td>
<td>PET BOTTLE MANUFACTURE STREAM FLOWS</td>
<td>7-8</td>
</tr>
<tr>
<td>7.9</td>
<td>PET BOTTLE MANUFACTURE WASTE STREAMS</td>
<td>7-12</td>
</tr>
<tr>
<td>7.10</td>
<td>2-LITER BIAxiaLLy ORIenTED PET BOTTLES MADE BY TWO-STAGE INJECTION STRETCH BLOW-MOLD PROCESS TOTAL CAPITAL INVESTMENT</td>
<td>7-17</td>
</tr>
<tr>
<td>7.11</td>
<td>2-LITER BIAxiaLLy ORIenTED PET BOTTLES MADE BY TWO-STAGE INJECTION STRETCH BLOW-MOLD PROCESS CAPITAL INVESTMENT BY SECTION</td>
<td>7-18</td>
</tr>
<tr>
<td>7.12</td>
<td>2-LITER BIAxiaLLy ORIenTED PET BOTTLES MADE BY TWO-STAGE INJECTION STRETCH BLOW-MOLD PROCESS PRODUCTION COSTS</td>
<td>7-19</td>
</tr>
<tr>
<td>7.13</td>
<td>2-LITER BIAxiaLLy ORIenTED PET BOTTLES MADE BY TWO-STAGE INJECTION STRETCH BLOW-MOLD PROCESS DIRECT COSTS BY SECTION ($1,000/YR)</td>
<td>7-21</td>
</tr>
<tr>
<td>7.14</td>
<td>2-LITER BIAxiaLLy ORIenTED PET BOTTLES MADE BY TWO-STAGE INJECTION STRETCH BLOW-MOLD PROCESS HYPOTHETICAL TWICE BASE CAPACITY CASE PRODUCTION COSTS</td>
<td>7-22</td>
</tr>
</tbody>
</table>