Abstract
Process Economics Program Report 135C
OPPORTUNITIES FOR GAS-TO-LIQUID TECHNOLOGIES
(February 2000)

This report reviews the current status and presents technological and economic analyses of major commercial (or nearly commercial) processes for converting methane-rich natural gas into commercially more attractive liquid products such as light distillates (naphtha) and middle distillates (kerosene and diesel). The report deals with three major technologies—Sasol’s Slurry Phase Distillate process, Shell’s Middle Distillates Synthesis process, and Syntroleum’s air-based Fischer-Tropsch technology. In addition, the comparative economics of Exxon’s Advanced Gas Conversion for the 21st Century (AGC-21) process are given in Section 8 of the report.

The report also compares the process economics of synfuels (automotive fuels synthesized from natural gas) with the process economics of liquefied natural gas. Global business opportunities for the described technologies are reviewed and evaluated. These business evaluations should be of special interest to those who are looking for investment opportunities in the gas-to-liquid industry.
CONTENTS

GLOSSARY .. xv

1 INTRODUCTION ... 1-1

2 SUMMARY ... 2-1

OVERVIEW OF SYNFUEL PROCESSES .. 2-2

Sasol .. 2-2

Shell ... 2-2

Exxon ... 2-2

Syntroleum ... 2-2

ECONOMIC EVALUATION SUMMARIES OF SYNFUEL PROCESSES 2-3

Higher-Capacity Plants ... 2-3

Location Factors ... 2-6

Rates of Return vs. Crude Oil Price .. 2-6

Discounted Cash Flows ... 2-8

GTL VS. LNG ... 2-10

3 OIL AND GAS ENERGY OUTLOOK ... 3-1

OIL AND GAS SCENARIO ... 3-1

Natural Gas .. 3-2

Oil .. 3-4

GTL Conversion—Why? .. 3-4

GTL Conversion—When? .. 3-13

Sasol Slurry-Phase Distillate Process ... 3-15

Shell Middle Distillates Synthesis .. 3-15

Exxon AGC-21 Process .. 3-15

Syntroleum Air-Based Process .. 3-15

GTL Conversion—Where? .. 3-15
CONTENTS (Continued)

4 TECHNOLOGY STATUS ..4-1
 INTRODUCTION ...4-1
 OVERVIEW OF INDUSTRY STATUS ..4-1
 Sasol Technology ...4-2
 Shell Technology (SMDS) ...4-5
 Syntroleum Technology ..4-6
 Exxon’s AGC-21 Technology ..4-7
 Mobil’s Methanol-to-Gasoline Technology ..4-8
 Rentech Technology ...4-9

5 SASOL PROCESS FOR SYNFUELS BY AUTOTHERMAL REFORMING
 AND SLURRY-PHASE FISCHER-TROPSCH SYNTHESIS5-1
 PROCESS DESCRIPTION ..5-1
 Section 100—Syngas Generation ..5-2
 Section 200—F-T Synthesis and Hydrocracking ..5-3
 Section 300—Product Separation ..5-4
 Steam Distribution ..5-4
 PROCESS DISCUSSION ..5-18
 Size Selection ..5-18
 Process Selection ..5-18
 F-T Reaction ..5-18
 Catalyst Choice ...5-19
 Catalyst Removal System ...5-19
 H₂ Separation ..5-20
 Steam Generation ..5-20
 Materials of Construction ..5-21
 Process Effluents ..5-21
CONTENTS (Continued)

5 SASOL PROCESS FOR SYNFUELS BY AUTOTHERMAL REFORMING AND SLURRY-PHASE FISCHER-TROPSCH SYNTHESIS (Concluded)

 COST ESTIMATES ..5-21
 Fixed-Capital Costs ..5-21
 Production Costs ...5-22
 Process Profitability ..5-22
 Higher Returns on Investment ..5-23
 Discounted Cash Flows ...5-23
 CONCLUSIONS ..5-24

6 SHELL PROCESS FOR MIDDLE DISTILLATES BY PARTIAL OXIDATION OF NATURAL GAS AND FIXED-BED FISCHER-TROPSCH SYNTHESIS6-1

 PROCESS DESCRIPTION...6-1
 Section 100—Syngas Generation ..6-1
 Section 200—F-T Synthesis and Hydrocracking ..6-2
 Section 300—Product Separation ..6-3
 Steam Distribution ..6-4
 PROCESS DISCUSSION...6-17
 Size Selection ...6-17
 Process Selection ...6-17
 F-T Reaction ...6-17
 Catalyst Choice ..6-18
 H₂ Separation ...6-18
 Materials of Construction ..6-18
 Process Effluents ...6-18
 COST ESTIMATES ...6-19
 Fixed-Capital Costs ..6-19
 Production Costs ...6-19
CONTENTS (Continued)

6 SHELL PROCESS FOR MIDDLE DISTILLATES BY PARTIAL OXIDATION OF NATURAL GAS AND FIXED-BED FISCHER-TROPSCH SYNTHESIS (Concluded)

Process Profitability ... 6-20
Higher Returns on Investment ... 6-20
Discounted Cash Flows ... 6-21
CONCLUSIONS ... 6-21

7 SYNTROLEUM PROCESS FOR LIQUID HYDROCARBONS FROM NATURAL GAS BY AUTOTHERMAL REFORMING AND FISCHER-TROPSCH SYNTHESIS .. 7-1

PROCESS DESCRIPTION ... 7-1
Section 100—Syngas Generation ... 7-1
Section 200—F-T Synthesis and Hydrocracking ... 7-2
Section 300—Product Separation ... 7-3
Steam Distribution ... 7-4
PROCESS DISCUSSION ... 7-15
Materials of Construction .. 7-15
Waste Streams ... 7-16
COST ESTIMATES .. 7-16
Fixed Costs .. 7-16
Production Costs .. 7-17

8 DISCUSSION OF THE ECONOMICS OF GTL AND LNG TECHNOLOGIES 8-1

HIGHER-CAPACITY PLANTS ... 8-2
LOCATION FACTORS ... 8-6
GTL PLANTS IN THE MIDDLE EAST ... 8-6
RETURN ON INVESTMENT .. 8-8
PRODUCT VALUE ... 8-8
CAPITAL-RELATED COSTS .. 8-8
CONTENTS (Concluded)

8 DISCUSSION OF THE ECONOMICS OF GTL AND LNG TECHNOLOGIES (Concluded)
 DISCOUNTED CASH FLOWS ...8-11
 SPECIAL SCENARIOS...8-12
 GTL PLANTS IN ALASKA OR WESTERN SIBERIA...8-18
 THE ECONOMICS OF LNG ...8-18
 LNG Shipping Costs ...8-24
 Economics of LNG Terminal and Vaporization Plant...8-24
 CONCLUSIONS ...8-29

APPENDIXES
 A: PATENT SUMMARY
 B: DESIGN AND COST BASES
 C: CITED REFERENCES
 D: PATENT REFERENCES BY COMPANY
 E PROCESS FLOW DIAGRAMS
FIGURES

2.1 Cash Flow Return on Investment vs. Equivalent Crude Price.............................2-9
2.2 DCFRR at Different Crude Oil Prices and Income Tax Rates.............................2-13
3.1 World Natural Gas Consumption..3-10
3.2 World Production and Consumption of Petroleum..3-11
3.3 Consumption of Gasoline and Middle Distillates...3-14
5.1 Sasol Process for Synfuels from Natural Gas by Autothermal Reforming and Slurry Phase F-T Synthesis ...E-3
5.2 Sasol Process for Synfuels from Natural Gas by Autothermal Reforming and F-T Synthesis: Steam Distribution Diagram ...5-6
5.3 Sasol Process for Synfuels from Natural Gas by Autothermal Reforming and F-T Synthesis: Dependence of Production Costs on Production Capacity and Natural Gas Price ..5-33
5.4 Sasol Process for Synfuels from Natural Gas by Autothermal Reforming and F-T Synthesis: Cash Flow Return on Investment vs. Equivalent Crude Price ...5-34
6.1 Shell Process for Distillates by Partial Oxidation of Natural Gas and Fixed-Bed F-T Synthesis ...E-7
6.2 Sasol Process for Synfuels from Natural Gas by Autothermal Reforming and F-T Synthesis: Steam Distribution Diagram ..6-5
6.3 Shell Process for Middle Distillates by Partial Oxidation of Natural Gas and Fixed-Bed F-T Synthesis: Dependence of Production Costs on Production Capacity and Natural Gas Price ..6-30
6.4 Shell Process for Middle Distillates by Partial Oxidation of Natural Gas and Fixed-Bed F-T Synthesis: Cash Flow Return on Investment vs. Equivalent Crude Price ...6-31
7.1 Syntroleum Process for Liquid Hydrocarbons from Natural Gas by Partial Oxidation and F-T Synthesis ...E-11
7.2 Syntroleum Process for Liquid Hydrocarbons from Natural Gas by Autothermal Reforming and F-T Synthesis: Steam Distribution Diagram ..7-5
7.3 Syntroleum Process for Liquid Hydrocarbons from Natural Gas by Autothermal Reforming and F-T Synthesis: Effect on Product Value of Synfuels at Different Capacities for Varying Natural Gas Prices ..7-22
FIGURES (Concluded)

8.1 Cash Flow Return on Investment vs. Equivalent Crude Price.........................8-9
8.2 Crude Oil Prices vs. Liquid Product Values..8-10
8.3 DCFRR at Different Crude Prices ...8-14
8.4 Natural Gas Liquefaction by Mixed Refrigerant Cycle:
Product Unit Cost as a Function of Rate of Return..8-23
TABLES

2.1 Comparison of Process Economics:
Total Fixed Costs for Base Capacities ...2-4

2.2 Comparison of Process Economics:
Production Costs for Base Capacities ...2-4

2.3 Comparison of Process Economics:
Total Fixed Costs for 50,000 b/d Capacity ..2-5

2.4 Comparison of Process Economics:
Production Costs for 50,000 b/d Capacity ..2-5

2.5 Comparison of Process Economics:
Total Fixed Capital and Production Costs ...2-7

2.6 Comparison of Process Economics:
Total Fixed Capital and Production Costs ...2-7

2.7 After-Tax Discounted Cash Flow for a 50,000 b/d Plant2-12

3.1 World Proven Reserves of Natural Gas (January 1999)3-2

3.2 Countries with Proven Gas Reserves of More than 50 Trillion Cubic Feet
(Figures as of 1997) ..3-3

3.3 Dry Gas Production in Industrialized Countries ..3-5

3.4 Dry Gas Consumption in Industrialized Countries ..3-7

3.5 Dry Gas Consumption in Some Developing Countries3-9

3.6 World Proven Reserves of Crude Oil by Region (1982–1997)3-12

4.1 Opportunities for Gas-to-Liquid Technologies
Patent Summary ..A-3

5.1 Sasol Process for Synfuels from Natural Gas
by Autothermal Reforming and F-T Synthesis:
Design Bases ..5-7

5.2 Sasol Process for Synfuels from Natural Gas
by Autothermal Reforming and F-T Synthesis:
Stream Flows ...5-9

5.3 Sasol Process for Synfuels from Natural Gas
by Autothermal Reforming and F-T Synthesis:
Major Equipment ...5-14

5.4 Sasol Process for Synfuels from Natural Gas
by Autothermal Reforming and F-T Synthesis:
Utilities Summary ..5-17
TABLES (Continued)

5.5 Sasol Process for Synfuels from Natural Gas
by Autothermal Reforming and F-T Synthesis:
Total Capital Investment...5-25

5.6 Sasol Process for Synfuels from Natural Gas
by Autothermal Reforming and F-T Synthesis:
Capital Investment by Section...5-26

5.7 Sasol Process for Synfuels from Natural Gas
by Autothermal Reforming and F-T Synthesis:
Production Costs..5-27

5.8 Sasol Process for Synfuels from Natural Gas
by Autothermal Reforming and F-T Synthesis:
CRF Values for Invested Capital at Various Rates of Interest...............5-29

5.9 Sasol Process for Synfuels from Natural Gas
by Autothermal Reforming and F-T Synthesis:
After-Tax Discounted Cash Flow for 20,000 b/d Plant.............................5-30

5.10 Sasol Process for Synfuels from Natural Gas
by Autothermal Reforming and F-T Synthesis:
After-Tax Discounted Cash Flow for 20,000 b/d Plant.............................5-31

5.11 Sasol Process for Synfuels from Natural Gas
by Autothermal Reforming and F-T Synthesis:
After-Tax Discounted Cash Flow for 20,000 b/d Plant.............................5-32

6.1 Shell Process for Middle Distillates by Partial Oxidation
of Natural Gas and Fixed-Bed F-T Synthesis:
Design Bases...6-6

6.2 Shell Process for Middle Distillates by Partial Oxidation
of Natural Gas and Fixed-Bed F-T Synthesis:
Stream Flows...6-8

6.3 Shell Process for Middle Distillates by Partial Oxidation
of Natural Gas and Fixed-Bed F-T Synthesis:
Major Equipment..6-13

6.4 Shell Process for Middle Distillates by Partial Oxidation
of Natural Gas and Fixed-Bed F-T Synthesis:
Utilities Summary...6-16

6.5 Shell Process for Middle Distillates by Partial Oxidation
of Natural Gas and Fixed-Bed F-T Synthesis:
Total Capital Investment ..6-22
TABLES (Continued)

6.6 Shell Process for Middle Distillates by Partial Oxidation of Natural Gas and Fixed-Bed F-T Synthesis: Capital Investment by Section..6-23

6.7 Shell Process for Middle Distillates by Partial Oxidation of Natural Gas and Fixed-Bed F-T Synthesis: Production Costs..6-24

6.8 Shell Process for Middle Distillates by Partial Oxidation of Natural Gas and Fixed-Bed F-T Synthesis: CRF Values for Invested Capital at Various Rates of Interest.............................6-26

6.9 Shell Process for Middle Distillates by Partial Oxidation of Natural Gas and Fixed-Bed F-T Synthesis: After-Tax Discounted Cash Flow Analysis for a 24,000 b/d Plant6-27

6.10 Shell Process for Middle Distillates by Partial Oxidation of Natural Gas and Fixed-Bed F-T Synthesis: After-Tax Discounted Cash Flow Analysis for a 24,000 b/d Plant6-28

6.11 Shell Process for Middle Distillates by Partial Oxidation of Natural Gas and Fixed-Bed F-T Synthesis: After-Tax Discounted Cash Flow Analysis for a 24,000 b/d Plant6-29

7.1 Syntroleum Process for Liquid Hydrocarbons from Natural Gas by Autothermal Reforming and F-T Synthesis: Design Bases...7-6

7.2 Syntroleum Process for Liquid Hydrocarbons from Natural Gas by Autothermal Reforming and F-T Synthesis: Stream Flows...7-8

7.3 Syntroleum Process for Liquid Hydrocarbons from Natural Gas by Autothermal Reforming and F-T Synthesis: Major Equipment...7-12

7.4 Syntroleum Process for Liquid Hydrocarbons from Natural Gas by Autothermal Reforming and F-T Synthesis: Utilities Summary...7-14

7.5 Syntroleum Process for Liquid Hydrocarbons from Natural Gas by Autothermal Reforming and F-T Synthesis: Total Capital Investment ...7-18

7.6 Syntroleum Process for Liquid Hydrocarbons from Natural Gas by Autothermal Reforming and F-T Synthesis: Capital Investment by Section...7-19
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>Syntroleum Process for Liquid Hydrocarbons from Natural Gas by Autothermal Reforming and F-T Synthesis: Production Costs</td>
</tr>
<tr>
<td>8.1</td>
<td>Overall Comparison of Process Economics: Total Fixed Costs and Production Costs for Base Capacities</td>
</tr>
<tr>
<td>8.2</td>
<td>Overall Comparison of Process Economics: Total Fixed Costs and Production Costs for 50,000 b/d Capacity</td>
</tr>
<tr>
<td>8.3</td>
<td>Overall Comparison of Process Economics: Total Fixed Capital and Production Costs</td>
</tr>
<tr>
<td>8.4</td>
<td>Comparison of Process Economics: Total Fixed Capital and Production Costs</td>
</tr>
<tr>
<td>8.5</td>
<td>After-Tax Discounted Cash Flow for a 50,000 b/d GTL Plant</td>
</tr>
<tr>
<td>8.6</td>
<td>Special Scenario: Gas at $0, Tax at $0: Total Capital Investment</td>
</tr>
<tr>
<td>8.7</td>
<td>Special Scenario: Gas at $0, Tax at $0: Production Costs</td>
</tr>
<tr>
<td>8.8</td>
<td>Operating Costs Estimate: 50,000 b/d Plant in Alaska</td>
</tr>
<tr>
<td>8.9</td>
<td>Natural Gas Liquefaction by Mixed Refrigerant Cycle: Production Costs</td>
</tr>
<tr>
<td>8.10</td>
<td>Capital and Operating Costs for an LNG Vessel</td>
</tr>
<tr>
<td>8.11</td>
<td>LNG Terminal and Vaporization Plant: Production Costs</td>
</tr>
</tbody>
</table>