Abstract
Process Economics Program Report No. 130A
WATER-SOLUBLE POLYMERS
(October 1993)

This report covers three types of water-soluble polymers:
1. Water-soluble cellulose ethers
2. Acrylic acid-maleic anhydride copolymers [or acrylic acid-maleic anhydride (acid) copolymers] and their copolymers partially or fully neutralized in the form of the alkali metal or ammonium salts
3. Carrageenan.

These water-soluble polymers, which are produced in relatively small volumes, are relatively high-value specialty chemical products. They are used in a variety of applications such as foods, paper, detergents, pharmaceuticals, cosmetics, tooth pastes, and toiletries.

This report reviews the industry status and technological development of water-soluble cellulose ethers since PEP Report 130 was issued in April 1979 and updates the process economics for the production of sodium carboxymethyl cellulose and hydroxypropyl methyl cellulose. It also reviews the properties and applications of acrylic acid-maleic anhydride (acid) copolymers and carrageenan and their production technologies. In addition, the report estimates the process economics for the production of an acrylic acid-maleic acid (sodium salts) copolymer and a refined carrageenan product.

This report will be of use to present and future water-soluble polymer producers and users.
CONTENTS

1 INTRODUCTION

1-1 INTRODUCTION

2 SUMMARY

2-1 INTRODUCTION

2 WATER-SOLUBLE CELLULOSE ETHERS

2-1 WATER-SOLUBLE CELLULOSE ETHERS

Industrial Aspects

Consumption

Producers and Production Capacities

Technical Aspects

Patents

A Sodium Carboxymethyl Cellulose

Cost Estimates

A Hydroxypropyl Methyl Cellulose

Cost Estimates

2 ACRYLIC ACID-MALEIC ANHYDRIDE COPOLYMERS

2-6 ACRYLIC ACID-MALEIC ANHYDRIDE COPOLYMERS

Industrial Aspects

Technical Aspects

Patents

An Acrylic Acid-Maleic Anhydride Copolymer

Cost Estimates

2 CARRAGEENAN

2-9 CARRAGEENAN

Industrial Aspects

Consumption and Consumption Patterns

Producers and Suppliers

Technical Aspects

Patents

Carrageenan by an Extraction Process

Cost Estimates

3 INDUSTRY STATUS

3-1 INDUSTRY STATUS

3 WATER-SOLUBLE CELLULOSE ETHERS

3-1 WATER-SOLUBLE CELLULOSE ETHERS

Consumption

Producers and Production Capacity

3 ACRYLIC ACID-MALEIC ANHYDRIDE (ACID) COPOLYMERS

3-11 ACRYLIC ACID-MALEIC ANHYDRIDE (ACID) COPOLYMERS

Consumption and Production
CONTENTS (Continued)

3 INDUSTRY STATUS (Concluded)
 CARRAGEENAN 3-11
 Consumption and Consumption Patterns 3-12
 Japan 3-12
 United States/Canada 3-12
 Western Europe 3-15
 Producers and Suppliers 3-15
 Japan 3-15
 United States 3-15
 Western Europe 3-16
 Chile 3-16
 The Philippines 3-16
 Republic Of Korea 3-17
 Taiwan (China) 3-17
 Sources of Seaweed 3-17
 Farm Cultivation 3-17

4 WATER-SOLUBLE CELLULOSE ETHERS 4-1
 INTRODUCTION 4-1
 REVIEW OF PROCESSES 4-2
 Patents 4-4
 SODIUM CARBOXYMETHYL CELLULOSE 4-13
 Process Description 4-13
 Section 100 4-14
 Section 200 4-15
 Section 300 4-15
 Process Discussion 4-21
 Cost Estimates 4-21
 HYDROXYPROPYL METHYL CELLULOSE 4-28
 Process Description 4-28
 Section 100 4-28
 Section 200 4-29
 Section 300 4-30
 Process Discussion 4-36
 Cost Estimates 4-36
5 ACRYLIC ACID-MALEIC ANHYDRIDE (ACID) COPOLYMERS 5-1

- **INTRODUCTION** 5-1
- **CHEMISTRY/PROPERTIES** 5-1
- **REVIEW OF PROCESSES** 5-2
 - Patents 5-2
 - **AN ACRYLIC ACID-MALEIC ACID (SODIUM SALTS) COPOLYMER** 5-5
 - Process Description 5-5
 - Process Discussion 5-10
 - Cost Estimates 5-10

6 CARRAGEENAN 6-1

- **INTRODUCTION** 6-1
- **CHEMICAL STRUCTURE AND PROPERTIES** 6-1
 - Chemical Reactivity 6-1
 - Molecular Weight 6-5
 - Rheological Properties 6-5
 - Hydration/Gelation 6-5
 - Acid Resistance 6-6
- **REVIEW OF PROCESSES** 6-6
 - Seaweeds 6-6
 - Harvesting 6-7
 - Farm Cultivation 6-7
 - Carrageenan Production 6-8
 - Patents 6-11
- **CARRAGEENAN BY AN EXTRACTION PROCESS** 6-13
 - Process Description 6-14
 - Section 100 6-15
 - Section 200 6-15
 - Process Discussion 6-20
 - Cost Estimates 6-22
CONTENTS (Concluded)

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PATENT SUMMARY TABLES</td>
<td>A-1</td>
</tr>
<tr>
<td>B</td>
<td>DESIGN AND COST BASES</td>
<td>B-1</td>
</tr>
<tr>
<td>C</td>
<td>CITED REFERENCES</td>
<td>C-1</td>
</tr>
<tr>
<td>D</td>
<td>PATENT REFERENCES BY COMPANY</td>
<td>D-1</td>
</tr>
<tr>
<td>E</td>
<td>PROCESS FLOW DIAGRAMS</td>
<td>E-1</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

4.1 Sodium Carboxymethyl Cellulose
Process Flow Diagram E-3

4.2 Sodium Carboxymethyl Cellulose
Effect of Cellulose and Monochloroacetic Acid
Prices on Product Value 4-26

4.3 Sodium Carboxymethyl Cellulose
Effect of Capital-Related Costs on Product Value 4-27

4.4 Hydroxypropyl Methyl Cellulose
Process Flow Diagram E-9

4.5 Hydroxypropyl Methyl Cellulose
Effect of Cellulose, Methyl Chloride, and Propylene Oxide
Prices on Product Value 4-41

4.6 Hydroxypropyl Methyl Cellulose
Effect of Capital-Related Costs on Product Value 4-42

5.1 Acrylic Acid-Maleic Anhydride (Acid) Copolymers
Process Flow Diagram E-15

5.2 Acrylic Acid-Maleic Anhydride (Acid) Copolymers
Effect of Acrylic Acid Price on Product Value 5-15

5.3 Acrylic Acid-Maleic Anhydride (Acid) Copolymers
Effect of Capital-Related Costs on Product Value 5-16

6.1 Carrageenan
Process Flow Diagram E-17

6.2 Carrageenan
Effect of Capital-Related Costs on Product Value 6-29

6.3 Carrageenan
Effect of Seaweed Price on Product Value 6-30
<table>
<thead>
<tr>
<th>TABLES</th>
</tr>
</thead>
</table>
| 2.1 Cost Summary
Production of Carboxymethyl Cellulose (CMC), Hydroxypropyl Methyl Cellulose (HPMC), Acrylic Acid-Maleic Anhydride Copolymer, and Carrageenan | 2-5 |
| 3.1 Water-Soluble Cellulose Ethers Applications
of Selected Cellulose Ethers | 3-2 |
| 3.2 Water-Soluble Cellulose Ethers
1991 Consumption and Consumption Patterns in the United States, Western Europe, and Japan | 3-5 |
| 3.3 Water-Soluble Cellulose Ethers
Types of CMC Deliveries in Japan in 1991 | 3-6 |
| 3.4 Major Producers of Water-Soluble Cellulose Ethers: Western Europe, Japan, Korea, Taiwan, and the United States | 3-8 |
| 3.5 Major Producers of Water-Soluble Cellulose Ethers and Their Production Capacities and Countries of Operations | 3-10 |
| 3.6 Commercial Applications for Carrageenan Products | 3-13 |
| 3.7 Major Commercial Sources of Seaweed for Carrageenan Production | 3-18 |
| 4.1 Water-Soluble Cellulose Ethers
Patent Summary | A-3 |
| 4.2 Sodium Carboxymethyl Cellulose (CMC)
Design Bases and Assumptions | 4-14 |
| 4.3 Sodium Carboxymethyl Cellulose (CMC)
Major Equipment | 4-16 |
| 4.4 Sodium Carboxymethyl Cellulose (CMC)
Stream Flows | 4-18 |
| 4.5 Sodium Carboxymethyl Cellulose (CMC)
Utilities Summary | 4-20 |
| 4.6 Sodium Carboxymethyl Cellulose (CMC)
Total Capital Investment | 4-23 |
| 4.7 Sodium Carboxymethyl Cellulose (CMC)
Production Costs | 4-24 |
| 4.8 Hydroxypropyl Methyl Cellulose (HPMC)
Design Bases and Assumptions | 4-29 |
TABLES (Continued)

4.9 Hydroxypropyl Methyl Cellulose (HPMC)
 Major Equipment 4-31
4.10 Hydroxypropyl Methyl Cellulose (HPMC)
 Stream Flows 4-33
4.11 Hydroxypropyl Methyl Cellulose (HPMC)
 Utilities Summary 4-35
4.12 Hydroxypropyl Methyl Cellulose (HPMC)
 Total Capital Investment 4-38
4.13 Hydroxypropyl Methyl Cellulose (HPMC)
 Production Costs 4-39

5.1 Acrylic Acid-Maleic Anhydride (Acid) Copolymers
 Patent Summary A-47
5.2 Acrylic Acid-Maleic Anhydride (Acid) Copolymers
 Design Bases and Assumptions 5-6
5.3 Acrylic Acid-Maleic Anhydride (Acid) Copolymers
 Major Equipment 5-7
5.4 Acrylic Acid-Maleic Anhydride (Acid) Copolymers
 Stream Flows 5-8
5.5 Acrylic Acid-Maleic Anhydride (Acid) Copolymers
 Utilities Summary 5-9
5.6 Acrylic Acid-Maleic Anhydride (Acid) Copolymers
 Total Capital Investment 5-12
5.7 Acrylic Acid-Maleic Anhydride (Acid) Copolymers
 Production Costs 5-13

6.1 Carrageenan
 Patent Summary A-60
6.2 Structure of Commercial Carrageenan 6-2
6.3 Selected Properties of Commercial Carrageenan 6-3
6.4 Carrageenan
 Design Bases and Assumptions 6-14
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Carrageenan Major Equipment</td>
<td>6-16</td>
</tr>
<tr>
<td>6.6</td>
<td>Carrageenan Stream Flows</td>
<td>6-18</td>
</tr>
<tr>
<td>6.7</td>
<td>Carrageenan Utilities Summary</td>
<td>6-19</td>
</tr>
<tr>
<td>6.8</td>
<td>Carrageenan Total Capital Investment</td>
<td>6-24</td>
</tr>
<tr>
<td>6.9</td>
<td>Carrageenan Capital Investment by Section</td>
<td>6-25</td>
</tr>
<tr>
<td>6.10</td>
<td>Carrageenan Production Costs</td>
<td>6-26</td>
</tr>
<tr>
<td>6.11</td>
<td>Carrageenan Direct Costs by Section</td>
<td>6-28</td>
</tr>
</tbody>
</table>