PEP Report 129C
Advances in Catalytic Reforming

October 2015

PEP Report
Process Economics Program

Girish Ballal
Principal Analyst
PEP Report 129C

Advances in Catalytic Reforming

Girish Ballal, Principal Analyst

Abstract

Virtually all commercially important aromatic compounds in the modern world are produced by catalytic reforming of petroleum-derived naphtha. Some of these large-volume chemicals include benzene, toluene, xylene and ethylbenzene. These are further processed to produce intermediates such as styrene, cumene, phenol and BPA, and a variety of polymer products. Moreover, the stabilized reformate product is a valuable gasoline blending stock due to its superior octane boosting properties.

In this PEP Report, we review the current technologies for catalytic reforming of petroleum-based feedstock. The emphasis is on developments since the publication of our earlier PEP Report 129B in 2006 on catalytic reforming for gasoline production. The current report presents an analysis of catalytic reforming processes in the context of petrochemicals production. In addition to the reforming section it includes the extractive distillation process required to separate benzene, toluene and mixed xylenes feedstock. The process economics are developed for producing 581 million lb/yr (263,000 MT/yr) of toluene by commercial processes of three companies. This corresponds to a reforming unit with capacity to handle approximately 40,000 bbl/std of naphtha feedstock.

The production economics assessment in this report is based on USGC location. However, an iPEP Navigator module is attached with the report to allow a quick conversion of process economics in three other major regions: Germany, Japan and China. With the selection of each competing process, the module also allows production economics to be reported in English or metric units in each region.

While the processes are PEP’s independent interpretation of the companies’ patent literature and may not reflect in whole or in part the actual plant configuration, we do believe that they are sufficiently representative of the processes to estimate the plant economics within the range of accuracy for economic evaluations of the conceptual process designs.
Contents

1 Introduction 1-1
2 Conclusion 2-1
3 Executive summary 3-1
 Commercial overview 3-1
 Technology overview 3-1
 Process economics 3-3
 Summary and conclusions 3-9
4 Industry status 4-1
 Uses 4-1
 Supply and demand 4-3
 Capacities 4-7
 Health concerns and regulatory issues 4-8
 Worldwide producers of benzene, toluene and xylenes 4-8
 Planned worldwide capacities 4-10
 Feedstock 4-10
 Naphtha 4-10
 BTX products 4-11
 Product specifications 4-13
5 Chemistry review 5-1
 Process chemistry 5-1
 Reforming catalysts 5-3
 Monometallic catalysts 5-3
 Bimetallic catalysts 5-3
 Multimetallic catalysts 5-4
 Zeolite-based catalysts 5-5
 Catalyst developments 5-5
 Catalyst deactivation 5-8
 Production process 5-9
 Catalytic reforming process 5-9
 Semiregenerative catalytic reformer 5-9
 Continuous catalyst regeneration reformer 5-10
 Product recovery and purification 5-12
 Aromatic separation 5-13
 Solvents 5-15
 Patent review 5-15
 UOP 5-15
 Chevron Phillips 5-16
 Uhde 5-17
 Axens/IFP 5-18
 SABIC 5-18
 GTC 5-18
 ExxonMobil 5-19
6 Aromatic reforming by Axens process 6-1
 Process description 6-1
 Reforming reactors 6-1
 Reformate recovery and stabilization 6-1
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Comparison of production economics</td>
<td>3-5</td>
</tr>
<tr>
<td>3-2</td>
<td>Comparison of production economics (metric units)</td>
<td>3-6</td>
</tr>
<tr>
<td>4-1</td>
<td>Worldwide producers of benzene</td>
<td>4-9</td>
</tr>
<tr>
<td>4-2</td>
<td>Worldwide producers of toluene</td>
<td>4-9</td>
</tr>
<tr>
<td>4-3</td>
<td>Worldwide producers of xylene</td>
<td>4-9</td>
</tr>
<tr>
<td>4-4</td>
<td>Planned worldwide capacities</td>
<td>4-10</td>
</tr>
<tr>
<td>4-5</td>
<td>Benzene product specifications example</td>
<td>4-13</td>
</tr>
<tr>
<td>4-6</td>
<td>Toluene product specifications example</td>
<td>4-14</td>
</tr>
<tr>
<td>6-1</td>
<td>Design basis and assumption (Axens process)</td>
<td>6-3</td>
</tr>
<tr>
<td>6-2</td>
<td>Axens process feedstock composition</td>
<td>6-4</td>
</tr>
<tr>
<td>6-3</td>
<td>Axens process reaction yields</td>
<td>6-5</td>
</tr>
<tr>
<td>6-4</td>
<td>Axens process stream summary</td>
<td>6-6</td>
</tr>
<tr>
<td>6-5</td>
<td>Major equipment (Axens process)</td>
<td>6-12</td>
</tr>
<tr>
<td>6-6</td>
<td>Utilities summary (Axens process)</td>
<td>6-14</td>
</tr>
<tr>
<td>6-7</td>
<td>Total capital investment (Axens process)</td>
<td>6-18</td>
</tr>
<tr>
<td>6-8</td>
<td>Capital investment by sections (Axens process)</td>
<td>6-19</td>
</tr>
<tr>
<td>6-9</td>
<td>Production costs (Axens process)</td>
<td>6-20</td>
</tr>
<tr>
<td>6-10</td>
<td>Production costs in metric units (Axens process)</td>
<td>6-22</td>
</tr>
<tr>
<td>7-1</td>
<td>Design basis and assumptions (UOP process)</td>
<td>7-3</td>
</tr>
<tr>
<td>7-2</td>
<td>UOP process feedstock composition</td>
<td>7-4</td>
</tr>
<tr>
<td>7-3</td>
<td>UOP process reaction yield</td>
<td>7-5</td>
</tr>
<tr>
<td>7-4</td>
<td>Stream summary (UOP process)</td>
<td>7-6</td>
</tr>
<tr>
<td>7-5</td>
<td>Major equipment (UOP process)</td>
<td>7-12</td>
</tr>
<tr>
<td>7-6</td>
<td>Utilities summary (UOP process)</td>
<td>7-14</td>
</tr>
<tr>
<td>7-7</td>
<td>Total capital investment (UOP process)</td>
<td>7-17</td>
</tr>
<tr>
<td>7-8</td>
<td>Capital investment by section (UOP process)</td>
<td>7-18</td>
</tr>
<tr>
<td>7-9</td>
<td>Production costs (UOP process)</td>
<td>7-19</td>
</tr>
<tr>
<td>7-10</td>
<td>Production costs in metric unit (UOP process)</td>
<td>7-21</td>
</tr>
<tr>
<td>8-1</td>
<td>Design basis and assumptions (Chevron Phillips process)</td>
<td>8-3</td>
</tr>
<tr>
<td>8-2</td>
<td>Feedstock composition (Chevron Phillips process)</td>
<td>8-4</td>
</tr>
<tr>
<td>8-3</td>
<td>Reactor yields (Chevron Phillips process)</td>
<td>8-5</td>
</tr>
<tr>
<td>8-4</td>
<td>Stream summary (Chevron Phillips process)</td>
<td>8-6</td>
</tr>
<tr>
<td>8-5</td>
<td>Major equipment (Chevron Phillips process)</td>
<td>8-12</td>
</tr>
<tr>
<td>8-6</td>
<td>Utilities summary (Chevron Phillips process)</td>
<td>8-14</td>
</tr>
<tr>
<td>8-7</td>
<td>Total capital investment (Chevron Phillips process)</td>
<td>8-18</td>
</tr>
<tr>
<td>8-8</td>
<td>Capital investment by section (Chevron Phillips process)</td>
<td>8-19</td>
</tr>
<tr>
<td>8-9</td>
<td>Production costs (Chevron Phillips process)</td>
<td>8-20</td>
</tr>
<tr>
<td>8-10</td>
<td>Production costs in metric units (CPChem process)</td>
<td>8-22</td>
</tr>
<tr>
<td>8-11</td>
<td>Equipment list for reforming section</td>
<td>8-24</td>
</tr>
<tr>
<td>8-12</td>
<td>Zeolite reforming section capital investment</td>
<td>8-25</td>
</tr>
<tr>
<td>A-1</td>
<td>Catalytic reforming patent summary</td>
<td>A-1</td>
</tr>
</tbody>
</table>
Figures

Figure 3.1 Capital costs comparison 3-7
Figure 3.2 Capital costs comparison 3-7
Figure 3.3 Capital of CO₂ emissions 3-8
Figure 3.4 Comparison of water usage 3-8
Figure 4.1 Global consumption of benzene by end uses 4-1
Figure 4.2 Global consumption of toluene by end uses 4-2
Figure 4.3 Global consumption of mixed xylenes by end uses 4-2
Figure 4.4 Worldwide supply and demand for benzene 4-3
Figure 4.5 Benzene demand by regions 4-4
Figure 4.6 Worldwide supply and demand for toluene 4-5
Figure 4.7 Toluene demand by regions 4-5
Figure 4.8 Worldwide supply and demand for xylenes 4-6
Figure 4.9 Xylenes demand by regions 4-6
Figure 4.10 Benzene capacity by process type 4-7
Figure 4.11 Toluene capacity by process type 4-7
Figure 4.12 Xylenes capacity by process type 4-8
Figure 4.13 Historical prices for whole naphtha feedstock 4-11
Figure 4.14 Historical prices for benzene 4-12
Figure 4.15 Historical prices for toluene 4-12
Figure 4.16 Historical prices for xylenes (mixed) 4-13
Figure 5.1 Catalytic reforming reaction scheme 5-1
Figure 5.2 Primary reforming reactions 5-2
Figure 5.3 Secondary reforming reactions 5-2
Figure 5.4 Schematic of bifunctional catalyst 5-4
Figure 5.5 Schematic of multipromoted catalyst 5-4
Figure 5.6 Aromatic selectivity for zeolite-based catalyst 5-5
Figure 5.7 Effect of promoter system on reformate yield 5-6
Figure 5.8 Effect of promoter system on stability 5-7
Figure 5.9 Effect of promoter system on surface area aging 5-7
Figure 5.10 Semiregenerative catalytic reforming 5-10
Figure 5.11 Continuous catalytic reforming 5-11
Figure 5.12 Texicap™ radial reactor 5-12
Figure 5.13 Aromatics separation by liquid-liquid extraction 5-13
Figure 5.14 Aromatics separation by extractive distillation 5-14
Figure 5.15 Aromatics separation by divided wall extractive distillation 5-14
Table 6-5 (continued) Major equipment (Axens process) 6-13
Figure 6.2 Effect of plant capacity on investment costs 6-16
Figure 6.3 Effect of plant capacity on production costs 6-16
Figure 6.4 Production costs breakdown (Axens process) 6-17
Figure 7.2 Effect of feedstock price on investment costs 7-15
Figure 7.3 Effect of plant capacity on production costs 7-16
Figure 7.4 Production cost breakdown (UOP process) 7-16
Figure 8.3 Effect of feedstock price on investment costs 8-16
Figure 8.4 Effect of plant capacity on production costs 8-16
Figure 8.5 Production cost breakdown (Chevron Phillips process) 8-17
Figure 8.6 Combined conventional zeolite reforming 8-23
Table A-1 Catalytic reforming patent summary (continued) A-2
Table A-1 Catalytic reforming patent summary (continued) A-3
Table A-1 (Catalytic reforming patent summary (continued) A-4
Table A-1 Catalytic reforming patent summary (concluded) A-5
Figure 6.1 Continuous catalytic reforming (CCR) by Axens process (reforming reactors) E-1
Figure 6.2 Continuous catalytic reforming (CCR) by Axens process (product separation) E-2
Figure 7.1 Continuous catalytic reforming (CCR) by UOP process (reforming reactors) E-3
Figure 7.2 Continuous catalytic reforming (CCR) by UOP process (product separation) E-4
Figure 8.1 Continuous catalytic reforming (CCR) by CPChem process (reforming reactors) E-5
Figure 8.2 Continuous catalytic reforming (CCR) by CPChem process (product separation) E-6
IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com
Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com
Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com