Abstract
Process Economics Program Report 129B
ADVANCES IN CATALYTIC REFORMING
(October 2006)

First commercialized in 1940, catalytic reforming remains the dominant process for producing high octane gasoline blendstocks and refinery hydrogen. Reforming is also a major source of aromatic (benzene, toluene and xylenes (BTX)) petrochemical feedstock. Over 78% of the world’s refineries reform naphtha; total capacity is 13 LV% of total crude distillation capacity.

Demands on the catalytic reformer are changing:

a) The trend in gasoline specifications is to further reduce the allowable benzene and total aromatics contents. This is tending to reduce reforming severity and in turn hydrogen production.

b) Refinery hydrogen demand for hydroprocessing is increasing as the trend in fuel specifications is to decrease allowable sulfur in fuels.

c) Global near term demand for petrochemical aromatics lead by para-xylene is forecast to grow by 3.8%/yr to 5.6%/yr from 2005 to 2010. Longer term demand to 2015 is anticipated to grow slower.

d) A new factor in the U.S. and potentially elsewhere is replacement of MTBE with ethanol, which increases the demand for high octane gasoline blendstocks.

Evolution of reformer technology continues. Recent emphasis in catalytic reforming is on catalyst and process improvements to maximize catalyst life and selectivity to hydrogen and BTX aromatics, reforming of ultra low sulfur, low water naphthas, improved reactor internals, improved regeneration processes and revamping of existing units.

This report provides an overview of catalytic reforming developments in catalyst, process and hardware technologies since PEP Report 129A, “Advances in Catalytic Reforming”, issued in 1996. The report then develops process economics for reforming a paraffinic, straight run naphtha and a dehexanized naphtha in continuous catalytic regenerated units. Also, a paraffinic raffinate from aromatics extraction is reformer in a semiregenerative unit to produce a high aromatic reformate for aromatics extraction.

Professionals and managers who manage, research, develop, plan, operate, design plants or manage investments in the petroleum refining and allied industries could benefit from the information contained in this report.
ADVANCES IN CATALYTIC REFORMING

by Richard Nielsen

October 2006

A private report by the
PROCESS EC ONOMICS PROGRAM

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS (Continued)

CHEMISTRY... 5-9
Dehydrocyclization ... 5-16
Isomerization .. 5-16
Dehydrogenation .. 5-17
Hydrocracking .. 5-17
Hydrodealkylation ... 5-18
Alkylation and Transalkylation ... 5-18
CATALYSTS... 5-18
Commercial Catalysts ... 5-19
Monometallic Catalysts .. 5-23
Bimetallic Catalysts .. 5-24
Trimetallic Catalysts ... 5-26
Molecular Sieve Catalysts ... 5-27
Hybrid Catalysts .. 5-31
Catalyst Mixtures .. 5-32
Sulfur Tolerance ... 5-33
Catalyst Preparation ... 5-33
Catalyst Characterization .. 5-35
CATALYST DEACTIVATION ... 5-36
Coke .. 5-36
Sulfur .. 5-40
Oxygen Contamination .. 5-41
Sintering ... 5-43
Poisons ... 5-44
REGENERATION .. 5-44
Metal Redispersion .. 5-46
CATALYST ATTRITION .. 5-46
CONTENTS (Continued)

6 PROCESS REVIEW ... 6-1
 SEMIREGENERATIVE PROCESS ... 6-7
 CYCLIC REGENERATIVE PROCESS 6-8
 CONTINUOUS REGENERATIVE PROCESS 6-9
 COMMERCIAL PROCESSES .. 6-10
 Axens ... 6-11
 Howe-Baker Engineers Ltd. (CBI) ... 6-15
 UOP .. 6-16
 Revamping (Hybrid Systems) .. 6-18
 Catalyst Combinations .. 6-21
 OPERATIONS .. 6-21
 Pressure .. 6-23
 Temperature ... 6-24
 Space Velocity ... 6-25
 Hydrogen: Hydrocarbon Ratio .. 6-25
 “Heel” Catalyst .. 6-25
 DESIGN CONSIDERATIONS ... 6-26
 Furnaces .. 6-26
 Reactors ... 6-27
 CCR Catalyst Regenerator .. 6-28
 Filters .. 6-28
 Ultra Low Sulfur, Low Water Reforming 6-29
 Steel Treatment ... 6-29
 Process and Design Changes ... 6-30
 HCI Corrosion and Removal .. 6-30
CONTENTS (Continued)

7 CATALYTIC REFORMING FOR GASOLINE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>7-1</td>
</tr>
<tr>
<td>Section 100 – Feed Pretreatment</td>
<td>7-19</td>
</tr>
<tr>
<td>Section 200 – Reforming</td>
<td>7-20</td>
</tr>
<tr>
<td>Section 300 – Reformate Recovery and Stabilization</td>
<td>7-22</td>
</tr>
<tr>
<td>PROCESS DISCUSSION</td>
<td>7-22</td>
</tr>
<tr>
<td>Feedstock Pretreatment, Section 100</td>
<td>7-23</td>
</tr>
<tr>
<td>Reforming, Section 200</td>
<td>7-23</td>
</tr>
<tr>
<td>Reformate Recovery and Stabilization, Section 300</td>
<td>7-24</td>
</tr>
<tr>
<td>Utilities</td>
<td>7-24</td>
</tr>
<tr>
<td>Materials of Construction</td>
<td>7-25</td>
</tr>
<tr>
<td>Environmental Aspects</td>
<td>7-25</td>
</tr>
<tr>
<td>COST ESTIMATES</td>
<td>7-25</td>
</tr>
<tr>
<td>Investment Cost</td>
<td>7-25</td>
</tr>
<tr>
<td>Production Costs</td>
<td>7-30</td>
</tr>
<tr>
<td>Profitability</td>
<td>7-31</td>
</tr>
</tbody>
</table>

8 CATALYTIC REFORMING FOR AROMATICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>8-1</td>
</tr>
<tr>
<td>Section 100 – Reforming</td>
<td>8-13</td>
</tr>
<tr>
<td>Section 200 – Reformate Recovery and Stabilization</td>
<td>8-13</td>
</tr>
<tr>
<td>PROCESS DISCUSSION</td>
<td>8-14</td>
</tr>
<tr>
<td>Feedstock</td>
<td>8-14</td>
</tr>
<tr>
<td>Reforming, Section 100</td>
<td>8-15</td>
</tr>
<tr>
<td>Reformate Recovery and Stabilization, Section 200</td>
<td>8-15</td>
</tr>
<tr>
<td>Catalyst Regeneration</td>
<td>8-16</td>
</tr>
<tr>
<td>Materials of Construction</td>
<td>8-16</td>
</tr>
</tbody>
</table>
CONTENTS (Concluded)

Environmental Aspects .. 8-16
COST ESTIMATES .. 8-16
Investment Costs .. 8-16
Production Costs .. 8-18
Profitability .. 8-22

APPENDIX A: PATENT SUMMARY TABLES ... A-1
APPENDIX B: DESIGN AND COST BASES .. B-1
APPENDIX C: CITED REFERENCES .. C-1
APPENDIX D: PATENT REFERENCES BY COMPANY .. D-1
APPENDIX E: PROCESS FLOW DIAGRAM ... E-1
ILLUSTRATIONS

4.1 Refinery Block Flow Diagram Showing the Catalytic Reforming Unit and Major Hydrogen – Containing Streams ... 4-2
4.2 Evolution of UOP Platforming® Unit Hydrogen Production 4-3
4.3 Evolution of UOP Platforming® Unit C₅⁺ Reformate Yields 4-3
4.4 Petroleum Administration for Defense Districts ... 4-11
4.5 Singapore Motor Fuel Prices .. 4-12
4.6 Northwest Europe Motor Fuel Prices ... 4-13
4.7 United States (Gulf Coast) Motor Fuel Prices ... 4-13
5.1 Benfree™ Process ... 5-8
5.2 Block Diagram of Typical BTX Separation from Reformate 5-9
5.3 Generalized Reforming Reaction Network .. 5-10
5.4 C₆ Hydrocarbon Reaction Network ... 5-11
5.5 Generalized Reformer Reactions ... 5-12
5.6 Equilibrium Distribution of Major Reforming Species at 5-14
5.7 Classical Isomerization Mechanism for a Bifunctional Catalyst 5-17
5.8 PT-RE Bimetallic Catalyst Performance Compared to Monometallic PT Catalyst ... 5-24
5.9 Cancrinite Type Cage of Zeolite L ... 5-29
5.10 Structure of Zeolite L .. 5-30
5.11 Coke Deposition – Effect of Promoter Metal .. 5-39
5.12 Tortuosity Hysteresis During Regeneration of Toluene Generated Coke on Commercial PT-RE Catalyst ... 5-45
5.13 Leaching Process for Precious Metal Recovery 5-48
5.14 ARC Furnace Process for Recovering Precious Metals 5-49
5.15 Continuous Vibratory Screener .. 5-51
6.1 Semiregenerative Reforming Process ... 6-3
6.2 Cyclic Regenerative Reforming Process ... 6-3
6.3 UOP Continuous Catalyst Regeneration Platforming™ Process 6-4
6.4 Radial Flow Reactor ... 6-5
ILLUSTRATIONS (Concluded)

6.5 Axial Flow Reactor .. 6-6
6.6 Aromatic Yields of L Zeolite Catalyst Based RZ Process Compared to Conventional Process .. 6-11
6.7 Axens Octanizing™ Process ... 6-12
6.8 Axens RegenC2 Regenerator ... 6-13
6.9 Dry Burn Compared to Hot and Cold Burn Loops ... 6-14
6.10 Howe-Baker Semiregenerative Reforming .. 6-15
6.11 UOP Semiregenerative RZ Platforming™ Process ... 6-16
6.12 UOP’s Cycle X System Added to a Fixed Bed Reformer ... 6-20
6.13 Change in Reformer Conditions with Catalyst and Unit Type 6-23
6.14 Effect of Pressure and Operating Severity on Catalyst Deactivation 6-24
7.1 Catalytic Reforming for Gasoline Case 1: Whole Paraffinic Feed Process Flow Diagram ... E-3
7.2 Catalytic Reforming for Gasoline Case 2: Dehexanized Paraffinic Feed Process Flow Diagram ... E-5
7.3 Catalytic Reforming for Gasoline Case 2: Naphtha Feed Dehexanization 7-20
8.1 Integration of Zeolite Catalyst Reforming with Conventional Catalytic Reforming for Aromatics Production ... 8-2
8.2 Catalytic Reforming for Paraffinic Feedstock (Aromatics Extraction Raffinate) with Zeolite Catalyst Process Flow Diagram .. E-7
TABLES

3.1 Summary of Cost Estimates for Catalytic Reforming for Gasoline and BTX 3-6
4.1 Typical Composition of Mixed Xylenes and Thermodynamic Equilibrium 4-4
4.2 Gasoline Specifications and Expected Implementation Year 4-6
4.3 European Gasoline Specifications .. 4-6
4.4 Benzene-Toluene-Xylene General Specifications ... 4-8
4.5 Gas Processors Association Liquefied Petroleum Gas Specifications
 For Commercial B-P Mixtures .. 4-8
4.6 Worldwide Gasoline Consumption, 1000 B/D .. 4-9
4.7 US Finished Gasoline Demand, Average 1,000 B/D 4-11
4.8 World BTX Production .. 4-15
4.9 United States BTX Production ... 4-16
4.10 Price of Reforming Catalyst Metals, 2000 to July 2006, US$ 4-17
4.11 Regional Summary of Refinery Catalytic Reforming Feed Capacity 4-19
4.12 Distribution of Refinery Total Reformer Capacity by Feed Rate 4-20
4.13 Reformer Process Type Distribution by Region .. 4-20
4.14 Distribution of Reformer Type by Feed Capacity .. 4-21
4.15 North America Refinery Catalytic Reforming Capacity, January 2006 4-22
4.16 Western European Catalytic Reforming Capacity, January 2006 4-32
4.17 Central & Eastern European Refinery Catalytic Reforming Capacity, January 2006 ... 4-38
4.18 Asia-Pacific Catalytic Reforming Capacity, January 2006 4-40
4.19 Central & South American Refinery Catalytic Reforming Capacity, January 2006 ... 4-47
4.20 Former Soviet Union Refinery Catalytic Reforming Capacity, January 2006 4-50
4.21 Middle Eastern Refinery Catalytic Reforming Capacity, January 2006 4-53
TABLES (Continued)

4.22 African Refinery Catalytic Reforming Capacity, January 2006 ... 4-56
4.23 Announced Naphtha Reformer Construction .. 4-61
5.1 Typical Compositions and Characteristics of Naphthas Originating from the Same Crude Oil .. 5-2
5.2 Selected Properties of Typical Heavy Straight Run Naphthas .. 5-3
5.3 Selected Properties of Cracked Naphthas ... 5-3
5.4 GC Hydrocarbon Composition of a Straight Run Naphtha From North Sea Crude 5-4
5.5 Properties of Feed and Products from Chevron Rheiniforming Process at Severe Reforming ... 5-5
5.6 Pure and Blending Research Octane Numbers of Hydrocarbons 5-7
5.7 Thermodynamic and Kinetic Comparison of the Main Reforming Reactions 5-15
5.8 Commercial Reforming Catalysts -2005 .. 5-21
5.9 Examples of Multimetallic Chlorided Alumina Reforming Catalysts 5-26
5.10 Molecular Sieves Showing Naphtha Reforming Catalytic Activity in Combination with a Hydrogen-Dehydrogenation Metal Component 5-28
5.11 Pilot Plant (Demonstration Unit) Composition of Naphtha Reforming Over Zeolitic Hybird Catalyst .. 5-32
5.12 Effect of Operating Conditions on Coking ... 5-37
5.13 Maximum Oxygen Solubility in Pure Hydrocarbons .. 5-42
5.14 Oxidation Stability of Selected Hydrocarbons .. 5-42
5.15 Permanent Catalyst Poisons (CA 1985) .. 5-44
5.16 Alkaline and Sulfuric Acid Leaching Process Conditions .. 5-48
6.1 Catalytic Reforming Process History .. 6-2
6.2 Summary of Naphtha Reforming Processes .. 6-4
6.3 Relative Severities of SR and CCR Platforming Units ... 6-9
6.4 Yield Comparison of SR and CCR Platforming Units ... 6-10
6.5 Staged Investment Strategy (10,000 B/SD) Comparison ... 6-14
6.6 Semiregenerative Reformer Yields (Howe-Baker Process) ... 6-16
6.7 Semiregenerative Reformer Revamp to Dualforming or Full CCR 6-19
6.8 Temperature Effect on Selectivity to Benzene – Reforming N-Hexane
 Over a Platinum Catalyst at 2 LHSV .. 6-25
6.9 Conventional CCR Net Hydrogen Off-Gas Chloride Treater Conditions 6-31
7.1 Catalytic Reforming for Gasoline Continuous Catalyst Regeneration Process
 Feedstock Properties and Compositions .. 7-2
7.2 Catalytic Reforming for Gasoline Continuous Catalyst Regeneration Process
 Design Bases and Assumptions... 7-3
7.3 Catalytic Reforming for Gasoline Continuous Catalyst Regeneration Process
 Reactor Product Yields ... 7-4
7.4 Catalytic Reforming for Gasoline Continuous Catalyst Regeneration Process
 Product Properties .. 7-5
7.5 Catalytic Reforming for Gasoline Continuous Catalyst Regeneration Process
 Major Stream Flows .. 7-6
7.6 Catalytic Reforming for Gasoline Continuous Catalyst Regeneration Process:
 Dehexanized Naphtha Feed
 Major Stream Flows .. 7-9
7.7 Catalytic Naphtha Reforming for Gasoline Continuous Catalyst Regeneration
 Process: Whole Naphtha Feed
 Major Equipment ... 7-13
7.8 Catalytic Naphtha Reforming for Gasoline Continuous Catalyst Regeneration
 Process: Heavy Naphtha Feed
 Major Equipment ... 7-15
7.9 Catalytic Naphtha Reforming for Gasoline Continuous Catalyst Regeneration
 Process: Whole Naphtha Feed
 Utilities Summary ... 7-17
7.10 Catalytic Naphtha Reforming for Gasoline Continuous Catalyst Regeneration
 Process: Heavy Naphtha Feed
 Utilities Summary .. 7-18
7.11 Reactor Characteristics .. 7-21
7.12 Catalytic Naphtha Reforming for Gasoline Continuous Catalyst Regeneration
 Process: Whole Naphtha Feed
 Total Capital Investment ... 7-26
7.13 Catalytic Naphtha Reforming for Gasoline Continuous Catalyst Regeneration
 Process: Whole Naphtha Feed
 Capital Investment by Section .. 7-27
7.14 Catalytic Naphtha Reforming for Gasoline Continuous Catalyst Regeneration
 Process: Heavy Naphtha Feed
 Total Capital Investment.. 7-28

7.15 Catalytic Naphtha Reforming for Gasoline Continuous Catalyst Regeneration
 Process: Heavy Naphtha Feed
 Capital Investment by Section... 7-29

7.16 Catalytic Naphtha Reforming for Gasoline Continuous Catalyst Regeneration
 Process: Whole Naphtha Feed
 Production Costs ... 7-32

7.17 Catalytic Naphtha Reforming for Gasoline Continuous Catalyst Regeneration
 Process: Heavy Naphtha Feed
 Production Costs ... 7-34

7.18 Sensitivity of ROI to Reformate-Feed Spread... 7-36

8.1 Catalytic Reforming for Aromatics – Semiregenerative Process
 Feedstock Properties and Compositions .. 8-3

8.2 Catalytic Reforming for Aromatics – Semiregenerative Process
 Design Bases and Assumptions.. 8-4

8.3 Catalytic Reforming for Aromatics – Semiregenerative Process
 Reactor Product Yields.. 8-5

8.4 Catalytic Reforming for Aromatics – Semiregenerative Process
 Product Properties... 8-6

8.5 Catalytic Reforming for Aromatics – Semiregenerative Process
 Major Stream Flows... 8-7

8.6 Catalytic Naphtha Reforming for Aromatics Semiregenerative
 Regeneration – BTX Raffinate Feed
 Major Equipment ... 8-10

8.7 Catalytic Naphtha Reforming for Aromatics Semiregenerative
 Regeneration – BTX Raffinate Feed
 Utilities Summary... 8-12

8.8 Catalytic Naphtha Reforming for Aromatics Semiregenerative
 Regeneration – BTX Raffinate Feed
 Total Capital Investment.. 8-17

8.9 Catalytic Naphtha Reforming for Aromatics Semiregenerative
 Regeneration – BTX Raffinate Feed
 Capital Investment by Section... 8-19
TABLES (Concluded)

8.10 Catalytic Naphtha Reforming for Aromatics Semiregenerative Regeneration – BTX Raffinate Feed
Production Costs .. 8-20

8.11 Sensitivity of ROI to Reformate – Feed Spread – BTX Reformate 8-22