Abstract
Process Economics Program Report 128E
POLYPROPYLENE
(September 2011)

Polypropylene is one of the fastest-growing categories of commodity thermoplastic resins in the world. Total polypropylene global production capacity was 59.3 million metric tons per year in 2010. This report is an update and supplement to the series of Process Economics Program reports on technologies and production costs of polypropylene.

Continuing innovations in polypropylene technology have achieved improved process economics. Polypropylene plants with single-line capacities of up to 500–600 thousand metric ton per year can be built, thereby delivering optimum process economics. Monomer efficiency has been improved reducing monomer consumption and emission. Improvements in catalyst and process technology have continued to expand polypropylene product properties to other applications.

This report continues our evaluation of polypropylene processes and catalysts. Polypropylene product and catalyst technology including Ziegler-Natta and metallocene catalysts are reviewed. Gas-phase and bulk processes to produce polypropylene are discussed. Applicable patents related to polypropylene technology are included in the discussion in this report. The industrial status of the polypropylene business including technology licensing, estimated global plant capacity and market data is provided. The process economics for three polypropylene gas-phase processes are presented: (1) the Dow UNIPOL™ polypropylene process, (2) the CB&I Lummus Novolen® polypropylene process, and (3) the LyondellBasell Spherizone™ polypropylene process. The process economics are based on a current world-scale single-line capacity polypropylene plant. This report will be of value to those companies producing polypropylene and to those companies considering entry into the business.
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

GLOSSARY .. XIII

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1
 INDUSTRY ASPECTS ... 2-1
 TECHNICAL ASPECTS ... 2-2
 Catalyst Development ... 2-2
 Product Development ... 2-3
 Process Development ... 2-3
 PROCESS ECONOMICS .. 2-4

3 INDUSTRY STATUS ... 3-1
 INTRODUCTION ... 3-1
 APPLICATIONS ... 3-2
 TECHNOLOGY AND LICENSING ... 3-2
 CB&I Lummus Novolen Technology GmbH ... 3-4
 Dow Chemical .. 3-5
 ExxonMobil Chemical .. 3-5
 INEOS .. 3-6
 Japan Polypropylene Corporation (JPP) .. 3-6
 LyondellBasell .. 3-6
 Mitsui Chemicals ... 3-7
 Sumitomo Chemical ... 3-7
 PROPYLENE SOURCES .. 3-8
 CAPACITY, PRODUCTION AND CONSUMPTION .. 3-9

4 POLYPROPYLENE PRODUCT AND CATALYST TECHNOLOGY .. 4-1
 INTRODUCTION ... 4-1
CONTENTS (Continued)

STEREOCHEMISTRY OF POLYPROPYLENE ... 4-1
POLYPROPYLENE PRODUCT .. 4-3
CATALYSTS ... 4-5
Ziegler-Natta Catalysts ... 4-5
 First and Second-Generation Catalysts ... 4-5
 Third-Generation Catalysts .. 4-6
Fourth-Generation Catalysts .. 4-6
Fifth-Generation Catalysts ... 4-8
Recent Ziegler-Natta Catalyst Patents .. 4-10
 LyondellBasell .. 4-10
 Dow Chemical ... 4-12
 CB&I Lummus Novolen® ... 4-15
 INEOS ... 4-16
Single-Site Catalysts ... 4-16

5 POLYPROPYLENE PROCESS TECHNOLOGY .. 5-1
INTRODUCTION ... 5-1
GAS-PHASE PROCESS TECHNOLOGY .. 5-2
 Dow UNIPOL™ Polypropylene Process .. 5-2
Sumitomo Chemical Polypropylene Process 5-3
CB&I Lummus Novolen® Process ... 5-4
Ineos Innovene™ Polypropylene Process .. 5-5
Japan Polypropylene Corporation (Chisso) Horizone Polypropylene Process 5-7
LyondellBasell Spherizone™ Polypropylene Process 5-8
BULK SLURRY PROCESS TECHNOLOGY ... 5-11
 LyondellBasell Spheripol Polypropylene Process 5-11
Mitsui Hypol II Polypropylene Process .. 5-14
ExxonMobil Polypropylene Process .. 5-15
Borealis Borstar® Polypropylene Process 5-16
CONTENTS (Continued)

6 ECONOMIC EVALUATION OF PROPYLENE IMPACT COPOLYMER BY DOW UNIPOL™ PP PROCESS

INTRODUCTION .. 6-1
PROCESS DESCRIPTION .. 6-1
Section 100—Polymerization ... 6-5
Section 200—Resin Degassing and Vent Recovery .. 6-5
Section 300—Product Finishing and Bagging .. 6-6
PROCESS DISCUSSION ... 6-6
COST ESTIMATES ... 6-7

7 ECONOMIC EVALUATION OF PROPYLENE IMPACT COPOLYMER BY CB&I LUMMUS NOVOLEN® PP PROCESS

INTRODUCTION .. 7-1
PROCESS DESCRIPTION .. 7-1
Section 100—Polymerization ... 7-5
Section 200—Product Finishing and Bagging .. 7-6
PROCESS DISCUSSION ... 7-6
COST ESTIMATES ... 7-6

8 ECONOMIC EVALUATION OF PROPYLENE IMPACT COPOLYMER BY LYONDELLBASELL SPHERIZONE™ PP PROCESS

INTRODUCTION .. 8-1
PROCESS DESCRIPTION .. 8-1
Section 100—Polymerization ... 8-6
Section 200—Product Finishing and Bagging .. 8-7
PROCESS DISCUSSION ... 8-7
COST ESTIMATES ... 8-8

APPENDIX A PATENT SUMMARY TABLES .. A-1

APPENDIX B DESIGN AND COST BASES ... B-1
CONTENTS (Concluded)

APPENDIX C CITED REFERENCES ... C-1
APPENDIX D PATENT REFERENCES BY COMPANY .. D-1
APPENDIX E PROCESS FLOW DIAGRAMS .. E-1
FIGURES

2.1 Effect of Plant Capacity on Estimated Capital Investment Cost (Grassroots) ... 2-5
3.1 2009 Polypropylene Capacity by Processes... 3-3
4.1 Atactic, Isotactic, and Syndiotactic Polypropylene Structures 4-2
4.2 Alkyl Phthalate ... 4-8
4.3 9,9-Bis(methoxymethyl)fluorene... 4-9
4.4 1,2-Diether Electron Donor .. 4-9
4.5 Succinate Electron Donor ... 4-11
4.6 Sulfone Electron Donor .. 4-12
4.7 Silyl Diol Ester Internal Electron Donor .. 4-13
4.8 Phosphorous-Based External Electron Donors ... 4-14
4.9 Substituted 1,2-Phenylene Aromatic Diester Internal Electron Donor 4-15
4.10 Dimethylsilanediylbis(2-Methyl-4-Phenylindenyl) Zirconium Dichloride 4-17
4.11 Novolen’s Substituted, Bridged Metallocene.. 4-20
4.12 Dimethylsilanediylbis[2-(Cyclohexylmethyl)-4-(4-Tert-Butylphenyl)-1-Indenyl]-Zirconium Dichloride .. 4-21
4.13 Dimethylsilanediylbis[2-(2,2-Dimethylpropyl)-4-(4-Tert-Butylphenyl)-1-Indenyl]-Zirconium Dichloride .. 4-22
5.1 UNIPOL™ PP Process for Impact Copolymer Production .. 5-2
5.2 Sumitomo Chemical Gas-Phase PP Process ... 5-4
5.3 CBI/Lummus Novolen® Process ... 5-5
5.4 Ineos Innovene™ PP Process ... 5-7
5.5 JPP Horizone Process ... 5-8
5.6 Spherizone™ Process ... 5-9
5.7 Expanded Product Properties Capability with the Spherizone™ Process 5-11
5.8 Spheripol Process .. 5-12
5.9 Fluidized Bed Reactor .. 5-13
5.10 ExxonMobil Polypropylene Process .. 5-16
5.11 Borealis Borstar® Polypropylene Process .. 5-17
FIGURES (Concluded)

6.1 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to the UNIPOL™ PP Process
Process Flow Diagram ...E-3

7.1 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to the Novolen® PP Process
Process Flow Diagram ...E-9

8.1 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to the Spherizone™ PP Process
Process Flow Diagram ...E-13
TABLES

2.1 2010 Top Ten Polypropylene Producers...2-1
2.2 Capital Costs
 Basis: 400 Kmta Propylene Impact Copolymer, Grassroots Plant.......................2-5
2.3 Capital Costs
 Basis: 400 Kmta Propylene Impact Copolymer, Part of a Petrochemical Complex...2-6
2.4 Production Costs
 Basis: 400 Kmta Propylene Impact Copolymer, Grassroots Plant.......................2-6
2.5 Production Costs
 Basis: 400 Kmta Propylene Impact Copolymer, Part of a Petrochemical Complex...2-7
3.1 Leading Polypropylene Producing Companies ...3-1
3.2 Global End Use ..3-2
3.3 Polypropylene Process Licensing ...3-3
3.4 2010–2013 Announced Capacity Additions by Processes ...3-4
3.5 Leading Propylene Producing Companies ...3-8
3.6 Global Polypropylene Capacity Growth ..3-9
3.7 2010 Global Polypropylene Consumption by Application ..3-9
3.8 Recent and Planned Capacity Addition ..3-10
3.9 2010 Polypropylene Producers and Plant Capacities ..3-12
4.1 Polypropylene Products Patent Summary ..A-3
4.2 Ziegler-Natta Catalysts Patent Summary ...A-9
4.3 Metallocene Catalysts Patent Summary ..A-23
4.4 The Effect of Different Mixtures of SCAs on the Maximum Bed Temperature:
 Simulated Power Outage ...4-13
4.5 2005–2010 Metallocene Polypropylene Patents by Companies4-23
5.1 UNIPOL™ PP Process Patent Summary ...A-34
5.2 Sumitomo Chemical PP Process Patent Summary ..A-35
5.3 Novolen® PP Process Patent Summary ..A-36
5.4 Innovene™ PP Process Patent Summary ..A-37
5.5 Spherizone™ PP Process Patent Summary ..A-39
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>Spheripol PP Process Patent Summary</td>
<td>A-42</td>
</tr>
<tr>
<td>6.1</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to UNIPOL™ PP Process Design Bases and Assumptions</td>
<td>6-2</td>
</tr>
<tr>
<td>6.2</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to UNIPOL™ PP Process Stream Flows</td>
<td>6-3</td>
</tr>
<tr>
<td>6.3</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to UNIPOL™ PP Process Major Equipment</td>
<td>6-9</td>
</tr>
<tr>
<td>6.4</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to UNIPOL™ PP Process Utilities Summary</td>
<td>6-11</td>
</tr>
<tr>
<td>6.5</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to UNIPOL™ PP Process for a Grassroots Plant Total Capital Investment</td>
<td>6-12</td>
</tr>
<tr>
<td>6.6</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to UNIPOL™ PP Process for a Grassroots Plant Capital Investment by Section</td>
<td>6-13</td>
</tr>
<tr>
<td>6.7</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to UNIPOL™ PP Process for a Grassroots Plant Production Costs</td>
<td>6-14</td>
</tr>
<tr>
<td>6.8</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to UNIPOL™ PP Process (Part of a Petrochemical Complex) Total Capital Investment</td>
<td>6-16</td>
</tr>
<tr>
<td>6.9</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to UNIPOL™ PP Process (Part of a Petrochemical Complex) Production Costs</td>
<td>6-17</td>
</tr>
<tr>
<td>7.1</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Novolen® PP Process Design Bases and Assumptions</td>
<td>7-2</td>
</tr>
<tr>
<td>7.2</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Novolen® PP Process Stream Flows</td>
<td>7-3</td>
</tr>
<tr>
<td>7.3</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Novolen® PP Process Major Equipment</td>
<td>7-9</td>
</tr>
</tbody>
</table>
TABLES (Continued)

7.4 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Novolen® PP Process
Utilities Summary .. 7-11

7.5 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Novolen® PP Process for a Grassroots Plant
Total Capital Investment ... 7-12

7.6 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Novolen® PP Process for a Grassroots Plant
Capital Investment by Section .. 7-13

7.7 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Novolen® PP Process for a Grassroots Plant
Production Costs ... 7-14

7.8 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Novolen® PP Process (Part of a Petrochemical Complex)
Total Capital Investment ... 7-16

7.9 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Novolen® PP Process (Part of a Petrochemical Complex)
Production Costs ... 7-17

8.1 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Spherizone™ PP Process
Design Bases and Assumptions ... 8-2

8.2 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Spherizone™ PP Process
Stream Flows ... 8-4

8.3 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Spherizone™ PP Process
Major Equipment .. 8-10

8.4 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Spherizone™ PP Process
Utilities Summary .. 8-12

8.5 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Spherizone™ PP Process for a Grassroots Plant
Total Capital Investment ... 8-13

8.6 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Spherizone™ PP Process for a Grassroots Plant
Capital Investment by Section .. 8-14

8.7 Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Spherizone™ PP Process for a Grassroots Plant
Production Costs ... 8-15
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Spherizone™ PP Process (Part of a Petrochemical Complex)</td>
<td>8-17</td>
</tr>
<tr>
<td></td>
<td>Total Capital Investment</td>
<td></td>
</tr>
<tr>
<td>8.9</td>
<td>Propylene Impact Copolymer Production by a Gas-Phase Process Similar to Spherizone™ PP Process (Part of a Petrochemical Complex)</td>
<td>8-18</td>
</tr>
<tr>
<td></td>
<td>Production Costs</td>
<td></td>
</tr>
</tbody>
</table>