Abstract
Process Economics Program Report 11E
METHYL METHACRYLATE
(August 2012)

The previous PEP report (PEP Report 255) on methyl methacrylate (MMA) was published in December 2004. That report analyzed and evaluated the following MMA technologies:

- Lucite technology (ethylene-based)
- Eastman technology (ethylene-based)
- Mitsubishi Gas Chemical (MGC) technology (acetone, hydrogen cyanide [HCN], and methyl formate-based)
- Mitsubishi Gas Chemical technology (acetone, HCN, and methanol-based)
- Asahi methacrolein (MA) oxidative-esterification technology (isobutylene-based)

Our current report presents an update on the above technologies and reviews research and development activities of different companies working in the MMA area. This review is based on the information disclosed by those companies in their patents and public-domain publications.

Our overall view about the abovementioned technologies is that there haven't been any significant changes in the last six or seven years, especially in regard to process configuration and process conditions (temperature, pressure, conversion, selectivity, etc.). Most of the research and development work remained focused on catalyst productivity improvements.

In addition to the technical review of the above processes, our current report also presents technoeconomic evaluations of the following technologies:

- Evonik technology (acetone and natural gas-based)
- Sumitomo/Nippon tandem-oxidation technology (isobutanol or isobutylene-based)
- Evonik (Degussa) hydrogen cyanide technology (natural gas and ammonia)

Our analysis indicates that among the commercialized technologies, the Lucite technology has the lowest total fixed capital (TFC) investment, just a shade lower than Asahi technology which is based on a different kind of feedstock. Evonik and MGC also stand close to each other, with MGC a little lower than Evonik. Both of these technologies are acetone-based. Sumitomo/Nippon technology (C4-based) has the highest TFC.

Lucite technology has the lowest production cost, despite having low per-pass conversion rates of reactants and higher utilities costs.
METHYL METHACRYLATE

by Syed N. Naqvi

August 2012

Santa Clara, California 95054
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS Chemical DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, Asia, South and Central America, the Middle East, Canada and Mexico.
CONTENTS

1 INTRODUCTION ... 1-1

2 SUMMARY ... 2-1
 COMMERCIAL OVERVIEW ... 2-1
 TECHNOLOGIES OVERVIEW ... 2-2
 C2-Based Technologies .. 2-2
 C3-Based Technologies .. 2-3
 C4-Based Technologies .. 2-6
 PROCESS ECONOMICS ... 2-7
 C2-Based Routes ... 2-7
 C3-Based Routes ... 2-11
 C4-Based Routes ... 2-14

3 INDUSTRY STATUS .. 3-1
 CAPACITY, PRODUCTION, AND CONSUMPTION 3-1
 USES OF METHYL METHACRYLATE 3-5
 MANUFACTURING PROCESSES AND TECHNOLOGY DEVELOPMENTS 3-6

4 TECHNICAL REVIEW .. 4-1
 OVERVIEW OF ROUTES TO METHYL METHACRYLATE 4-1
 C2-BASED ROUTES TO METHYL METHACRYLATE 4-2
 MMA from Ethylene via Propionaldehyde 4-2
 Hydroformylation of Ethylene to Propionaldehyde 4-2
 Condensation of Propionaldehyde and Formaldehyde to MA 4-3
 Oxidation of MA to MAA .. 4-3
 Esterification of MAA with Methanol to MMA 4-3
 MMA from Ethylene via Propionic Acid 4-3
 Hydrocarbonylation of Ethylene to Propionic Acid 4-4
 Condensation of Propionic Acid and Formaldehyde to MAA 4-4
 Esterification of MAA with Methanol to MMA 4-4
 Oxidative Esterification of Propionic Acid to MMA 4-4
 MMA from Ethylene via Methyl Propionate 4-5
 Carbomethoxylation of Ethylene to Methyl Propionate 4-5
 Condensation of Methyl Propionate and Formaldehyde to MMA 4-7
C₂-BASED ROUTES TO METHYL METHACRYLATE .. 4-8
MMA from Acetone and HCN via ACH by the Conventional Process 4-8
 Preparation of Acetone Cyanohydrin ... 4-9
 Hydrolysis of Acetone Cyanohydrin .. 4-9
 Esterification of Methacrylamide Sulfate ... 4-9
MMA from Acetone and HCN via ACH by the Evonik Process 4-9
 Preparation of Acetone Cyanohydrin ... 4-10
 Hydrolysis of Acetone Cyanohydrin .. 4-10
 Methanolysis of AHIBA to MAHIB ... 4-10
 Transesterification of MAHIB with MAA to Produce MMA 4-11
 Dehydration of α-Hydroxyisobutyric Acid to Produce MAA 4-11
MMA from Acetone and HCN via ACH by the Mitsubishi Gas Chemical Process 4-11
 Preparation of Acetone Cyanohydrin ... 4-12
 Hydrolysis of Acetone Cyanohydrin .. 4-12
 Transesterification of AHIBA to MAHIB .. 4-12
 Dehydration of MAHIB .. 4-12
 Dehydration of Formamide to HCN ... 4-13
 MGC Process Variant—Using Methanol for Esterification 4-13
MMA from Propylene via Isobutyric Acid by the Atochem/Rohm Process 4-14
 Hydrocarbonylation of Propylene to Isobutyric Acid 4-14
 Oxidative-Dehydrogenation of Isobutyric Acid to MAA 4-14
 The Esterification of MAA with Methanol to MMA 4-15
MMA from Propyne ... 4-15
 Sources of Propyne ... 4-15
 Propyne Carbomethoxylation ... 4-17
C₄-BASED ROUTES TO METHYL METHACRYLATE .. 4-17
MMA from IB/TBA via Methacrolein and Methacrylic Acid by a Three-Step Process ... 4-18
 Oxidation of Isobutylene/t-Butyl Alcohol to Methacrolein 4-18
 Oxidation of MA to MAA ... 4-19
 Recovery of MAA ... 4-20
 Esterification of MAA with Methanol to MMA 4-20
 Recovery of MMA ... 4-21
MMA from Isobutylene/t-Butyl Alcohol via Methacrolein by a Two-Step Process 4-22
MMA from Isobutylene via Methacrylonitrile .. 4-22
MMA from Isobutylene via Methacrylonitrile and Methacrylic Acid—Variation 4-22
MMA from Isobutylene via Methacrylonitrile and Methacrylamide—Variation 4-23
MMA from Isobutylene via Methacrylonitrile—Variation .. 4-23

PURIFICATION OF METHYL METHACRYLATE .. 4-23

5 PRODUCTION OF METHYL METHACRYLATE BY EVONIK TECHNOLOGY 5-1

PROCESS DESCRIPTION .. 5-3
Section 100—Acetone Cyanohydrin Production .. 5-4
Section 200—AHIBA Production ... 5-4
Section 300—MAHIB Production ... 5-5
Section 400—MMA Production .. 5-9
Section 500—MAA Regeneration .. 5-9

PROCESS DISCUSSION ... 5-21
Process Design ... 5-21
Feedstocks ... 5-21
Design Options ... 5-21
Catalysts System ... 5-22
Product Recovery .. 5-22
Materials of Construction ... 5-22

COST ESTIMATES .. 5-23
Fixed-Capital Costs .. 5-23
Production Costs .. 5-24

6 PRODUCTION OF HYDROGEN CYANIDE FROM NATURAL GAS AND AMMONIA ... 6-1

PROCESS DESCRIPTION .. 6-2
Section 100—Hydrogen Cyanide Production and Purification 6-2

PROCESS DISCUSSION ... 6-9
HCN Technology Selection ... 6-9
Catalyst System .. 6-9
HCN Reactor ... 6-10
Product Separation/Recovery ... 6-10
Waste Energy Recovery ... 6-11
CONTENTS (Concluded)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials of Construction</td>
<td>6-11</td>
</tr>
<tr>
<td>Process Waste Effluents</td>
<td>6-11</td>
</tr>
<tr>
<td>Process Design Optimization</td>
<td>6-11</td>
</tr>
<tr>
<td>COST ESTIMATES</td>
<td>6-16</td>
</tr>
<tr>
<td>Fixed-Capital Costs</td>
<td>6-16</td>
</tr>
<tr>
<td>Production Costs</td>
<td>6-16</td>
</tr>
</tbody>
</table>

7 PRODUCTION OF METHYL METHACRYLATE BY SUMITOMO/NIPPON SHOKUBAI TANDEM OXIDATION TECHNOLOGY

- PROCESS DESCRIPTION .. 7-3
- Section 100—Methacrolein Production ... 7-3
- Section 200—Methacrylic Acid Production .. 7-4
- Section 300—Methacrylic Acid Refining .. 7-5
- Section 400—MMA Production ... 7-9

- PROCESS DISCUSSION .. 7-22
- Process Design .. 7-22
- Feedstocks ... 7-22
- Design Options .. 7-22
- Oxygen (Air) System .. 7-22
- Product Recovery ... 7-22
- Materials of Construction .. 7-22

- COST ESTIMATES .. 7-23
- Fixed-Capital Costs .. 7-23
- Production Costs ... 7-24

APPENDIX A PATENT SUMMARY TABLES ... A-1

APPENDIX B DESIGN AND COST BASES .. B-1

APPENDIX C CITED REFERENCES ... C-1

APPENDIX D PATENT REFERENCES BY COMPANY ... D-1

APPENDIX E PROCESS FLOW DIAGRAMS .. E-1
FIGURES

4.1 Routes to Methyl Methacrylate ... 4-1
5.1 Production of Methyl Methacrylate by Evonik Technology
 Process Flow Diagram .. E-3
5.2 Production of Methyl Methacrylate by Evonik Technology
 Net Production Cost and Product Value of Methyl Methacrylate as a Function
 of Acetone Price ... 5-30
5.3 Production of Methyl Methacrylate by Evonik Technology
 Net Production Cost and Product Value of Methyl Methacrylate as a Function
 of Methanol Price ... 5-30
5.4 Production of Methyl Methacrylate by Evonik Technology
 Production Costs of Methyl Methacrylate as a Function of Plant Operating
 Level and Plant Capacity ... 5-31
6.1 Production of Hydrogen Cyanide from Natural Gas and Ammonia
 Process Flow Diagram .. E-7
6.2 Production of Hydrogen Cyanide from Natural Gas and Ammonia
 Net Production Costs and Product Value of HCN as a Function of
 Natural Gas Price for Base-Capacity Plant .. 6-21
6.3 Production of Hydrogen Cyanide from Natural Gas and Ammonia
 Net Production Costs and Product Value of HCN as a Function of
 Ammonia Gas Price for Base-Capacity Plant ... 6-21
7.1 Production of Methyl Methacrylate by Sumitomo/Nippon Tandem Oxidation
 Technology
 Process Flow Diagram .. E-9
7.2 Production of MMA by Sumitomo/Nippon Tandem Oxidation Technology
 Net Production Cost and Product Value of Methyl Methacrylate as a Function
 of Isobutylene Price ... 7-30
7.3 Production of MMA by Sumitomo/Nippon Tandem Oxidation Technology
 Production Costs of Methyl Methacrylate as a Function of Plant Operating
 Level and Plant Capacity ... 7-30
TABLES

2.1 C₂-Based Routes to Methyl Methacrylate
 Total Capital Investment... 2-9
2.2 C₂-Based Routes to Methyl Methacrylate
 Production Costs ... 2-10
2.3 C₃-Based Routes to Methyl Methacrylate
 Total Capital Investment... 2-12
2.4 C₃-Based Routes to Methyl Methacrylate
 Production Costs ... 2-13
2.5 C₄-Based Routes to Methyl Methacrylate
 Total Capital Investment... 2-15
2.6 C₄-Based Routes to Methyl Methacrylate
 Production Costs ... 2-16
2.7 Overall Comparison of MMA Technologies
 Total Fixed Costs... 2-17
2.8 Overall Comparison of MMA Technologies
 Production Costs of MMA... 2-18
3.1 Current and Projected World Methyl Methacrylate Capacity, Production, and
 Consumption by Region .. 3-2
3.2 World Methyl Methacrylate Consumption by End Use 3-3
3.3 Current and Projected Regional Methyl Methacrylate Consumption as
 Percentage of World Consumption .. 3-4
3.4 Major World Producers of Methyl Methacrylate 3-5
5.1 Production of Methyl Methacrylate by Evonik Technology
 Design Bases.. 5-6
5.2 Production of Methyl Methacrylate by Evonik Technology
 Stream Flows... 5-11
5.3 Production of MMA by Evonik Technology
 Major Equipment .. 5-17
5.4 Production of MMA by Evonik Technology
 Utilities Summary... 5-20
5.5 Production of MMA by Evonik Technology
 Total Capital Investment... 5-25
5.6 Production of MMA by Evonik Technology
 Capital Investment by Section... 5-26
5.7 Production of MMA by Evonik Technology
 Production Costs ... 5-28
6.1 Production of Hydrogen Cyanide from Natural Gas and Ammonia
 Design Bases... 6-4
<table>
<thead>
<tr>
<th>Section</th>
<th>Production Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Production of Hydrogen Cyanide from Natural Gas and Ammonia</td>
<td>Stream Flows</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-6</td>
</tr>
<tr>
<td>6.3</td>
<td>Production of Hydrogen Cyanide from Natural Gas and Ammonia</td>
<td>Major Equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-13</td>
</tr>
<tr>
<td>6.4</td>
<td>Production of Hydrogen Cyanide from Natural Gas and Ammonia</td>
<td>Utilities Summary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-15</td>
</tr>
<tr>
<td>6.5</td>
<td>Production of Hydrogen Cyanide from Natural Gas and Ammonia</td>
<td>Total Capital Investment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-18</td>
</tr>
<tr>
<td>6.6</td>
<td>Production of Hydrogen Cyanide from Natural Gas and Ammonia</td>
<td>Production Costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-19</td>
</tr>
<tr>
<td>7.1</td>
<td>Production of Methyl Methacrylate by Sumitomo/Nippon Tandem Oxidation Technology</td>
<td>Design Bases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-6</td>
</tr>
<tr>
<td>7.2</td>
<td>Production of Methyl Methacrylate by Sumitomo/Nippon Tandem Oxidation Technology</td>
<td>Stream Flows</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-10</td>
</tr>
<tr>
<td>7.3</td>
<td>Production of MMA by Sumitomo/Nippon Tandem Oxidation Technology</td>
<td>Major Equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-18</td>
</tr>
<tr>
<td>7.4</td>
<td>Production of MMA by Sumitomo/Nippon Tandem Oxidation Technology</td>
<td>Utilities Summary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-21</td>
</tr>
<tr>
<td>7.5</td>
<td>Production of MMA by Sumitomo/Nippon Tandem Oxidation Technology</td>
<td>Total Capital Investment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-25</td>
</tr>
<tr>
<td>7.6</td>
<td>Production of MMA by Sumitomo/Nippon Tandem Oxidation Technology</td>
<td>Capital Investment by Section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-26</td>
</tr>
<tr>
<td>7.7</td>
<td>Production of MMA by Sumitomo/Nippon Tandem Oxidation Technology</td>
<td>Production Costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-28</td>
</tr>
</tbody>
</table>