Abstract

Process Economics Program Report 115D
BIODEGRADABLE POLYMER LIFE CYCLE ASSESSMENT
(December 2001)

SRI’s Process Economics Program (PEP) was commissioned by its clients in 2000 to undertake a life cycle assessment (LCA) for the purpose of comparing a biodegradable polymer with a conventional commodity polymer in packaging applications. Biodegradable polymers offer the potential of addressing a range of environmental concerns associated with conventional polymers such as greenhouse gas emissions and sustainability. LCA is a tool specifically developed for assessing the overall environmental burden of a product and the system employed for manufacturing it. This report provides a cradle to grave LCA comparison of two polymers that may be used in food packaging applications:

- Polylactide (PLA) is a biodegradable polymer derived from corn. Fertilizer and herbicide production and corn farming serve as the initial subsystems. Corn is wet milled to obtain dextrose, the fermentation substrate for lactic acid. PLA is made from lactic acid with a solventless polymerization process. PLA may be thermoformed into food packaging that is compostable, but is more likely to be disposed by landfill in the United States.

- Polypropylene (PP) is derived primarily from natural gas in the United States. Natural gas liquids are recovered from above ground natural gas facilities and serve as the feedstock to steam cracking to make ethylene and propylene. The monomers are gas phase polymerized into PP. The polymer may be thermoformed into food packaging that is typically landfilled or incinerated after use.

In this report, PEP presents an inventory analysis of the PLA and PP systems including fuel use for processing and transportation. We also provide an impact assessment focused on global warming, the most important global environmental issue today. The following important conclusions are reached:

- PLA is a more energy efficient polymer than PP for a food packaging application such as a thermoformed yoghurt cup. However, the difference between the two systems becomes marginalized when the uncertainties of the estimates are considered.

- PLA and PP greenhouse gas emissions are equivalent when the effects of carbon sequestration in a landfill are taken into consideration. Uncertainties regarding PLA biodegradation in a landfill can greatly impact estimates of greenhouse gas emissions.

- While measured field or facility data are preferred for a rigorous LCA, PEP data can provide a reasonable basis when measured data is unavailable. Energy inventories and greenhouse gas emissions are readily derived from PEP data, but other potentially relevant impact indicators are not.

This report is useful as a transparent analysis of many of the energy and environmental issues associated both with biodegradable and conventional polymers. It also provides a detailed description of LCA methodologies and of the industry status of biodegradable polymers. The Appendix contains flow diagrams and material balances from the six PEP Reports that serve as the basis of the process data used in this study.

PEP’00 GMB
CONTENTS

1 INTRODUCTION.. 1-1

2 SUMMARY ... 2-1
 LCA BOUNDARY DEFINITION ... 2-2
 LCA FUNCTIONAL UNIT ... 2-2
 INVENTORY ANALYSIS .. 2-3
 IMPACT ASSESSMENT .. 2-4
 UNCERTAINTY AND SENSITIVITY .. 2-5
 CONCLUSIONS ... 2-6

3 INDUSTRY STATUS .. 3-1
 MARKET DEMAND .. 3-2
 SOLID WASTE DISPOSAL PATTERNS .. 3-3
 LEGISLATION AND REGULATION ... 3-7
 SUSTAINABILITY ... 3-7
 MARKET OPPORTUNITIES .. 3-9
 Compost Bags ... 3-10
 Loose-Fill Packaging ... 3-11
 Other Applications .. 3-11
 Lactic Acid Production .. 3-12
 Polylactide ... 3-13

4 LCA METHODOLOGIES ... 4-1
 SETAC GUIDELINES ... 4-2
 EPA GUIDELINES ... 4-5
 ISO STANDARDS ... 4-6
 APME ECO-PROFILE ... 4-9
 BASF ECO-EFFICIENCY .. 4-12
CONTENTS (Continued)

PUBLISHED CASE STUDIES .. 3-13
Poly(hydroxybutanoic acid) versus Polypropylene ... 4-13
Polyhydroxyalkanoate from Genetically Modified Corn .. 4-15
Yogurt Product Delivery Systems ... 4-18
Comparison of Mater-Bi to Paper and Polyethylene Bags .. 4-18

5 OBJECTIVE AND BOUNDARY DEFINITION ... 5-1
GEOGRAPHICAL AND TEMPORAL CONTEXT .. 5-2
BOUNDARY DEFINITION ... 5-2
FUNCTIONAL UNIT ... 5-6

6 INVENTORY ANALYSIS ... 6-1
Energy Metrics ... 6-1
POLYLACTIDE ... 6-2
Fertilizers ... 6-3
Atrazine .. 6-7
Corn Production .. 6-8
Dextrose Production .. 6-9
Lactic Acid Production .. 6-11
Lactide Production and Polymerization ... 6-13
Packaging Manufacture .. 6-15
Consumption .. 6-16
Landfilling .. 6-16
POLYPROPYLENE ... 6-17
Natural Gas Extraction .. 6-18
Natural Gas Liquids ... 6-19
Ethylene and Propylene Production ... 6-20
Polypropylene Polymerization .. 6-21
CONTENTS (Concluded)

Packaging Manufacture.. 6-23
Consumption... 6-24
Landfilling.. 6-24

7 IMPACT ASSESSMENT .. 7-1
GREENHOUSE GAS METRICS .. 7-2
POLYLACTIDE GREENHOUSE GAS EMISSIONS ... 7-4
POLYPROPYLENE GREENHOUSE GAS EMISSIONS .. 7-6
OTHER IMPACTS ... 7-8

8 UNCERTAINTY AND SENSITIVITY ... 8-1
UNCERTAINTY .. 8-1
SENSITIVITY ... 8-2
Coprocess Allocation .. 8-2
Agricultural Production .. 8-2
Process Issues .. 8-4
Package Weight ... 8-4
End-of-Life Treatment ... 8-5

APPENDIX A: MATERIAL BALANCES.. A-1
APPENDIX B: CITED REFERENCES.. B-1
APPENDIX C: PROCESS FLOW DIAGRAM... C-1
<table>
<thead>
<tr>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Renewables Vision 2020</td>
<td>3-8</td>
</tr>
<tr>
<td>4.1 Defining System Boundaries</td>
<td>4-2</td>
</tr>
<tr>
<td>4.2 Conceptual Role of Impact Categories</td>
<td>4-4</td>
</tr>
<tr>
<td>4.3 BASF Ecological Fingerprints</td>
<td>4-13</td>
</tr>
<tr>
<td>4.4 Ecological Fingerprints</td>
<td></td>
</tr>
<tr>
<td>Poly(hydroxybutanoic acid) vs. Polypropylene</td>
<td>4-14</td>
</tr>
<tr>
<td>4.5 Normalized Environmental Pollution and Costs</td>
<td>4-14</td>
</tr>
<tr>
<td>4.6 Neste/Tekes LCA Diaper System Flow Charts</td>
<td>4-16</td>
</tr>
<tr>
<td>4.7 Primary Energy Consumption in Diaper Systems</td>
<td></td>
</tr>
<tr>
<td>Neste/Tekes LCA</td>
<td>4-17</td>
</tr>
<tr>
<td>4.8 Global Warming 100 Years, Diaper System</td>
<td></td>
</tr>
<tr>
<td>Neste/Tekes LCA</td>
<td>4-18</td>
</tr>
<tr>
<td>5.1 Product Flow Charts</td>
<td>5-3</td>
</tr>
<tr>
<td>5.2 Dextrose Production Subsystem</td>
<td>5-4</td>
</tr>
<tr>
<td>5.3 KBR'S Ethylene Technology Full Product Recovery Scheme</td>
<td>5-5</td>
</tr>
<tr>
<td>6.1 Corn Wet-Milling Process</td>
<td>6-10</td>
</tr>
<tr>
<td>6.2 Treating of Natural Gas</td>
<td>6-18</td>
</tr>
<tr>
<td>8.1 U.S. Corn Yield</td>
<td>8-3</td>
</tr>
<tr>
<td>A.1 Kellogg Improved NH₃ Process Process Flow Diagram</td>
<td>C-3</td>
</tr>
<tr>
<td>A.2 Stamicarbon Co₂ Stripping Process for Urea Production Process Flow Diagram</td>
<td>C-5</td>
</tr>
<tr>
<td>A.3 Lactic Acid by pH 6 Fermentation Process Flow Diagram</td>
<td>C-7</td>
</tr>
<tr>
<td>A.4 Poly(Lactic Acid) by Ring-Opening Polymerization</td>
<td>C-9</td>
</tr>
<tr>
<td>A.5 NGL by The Expander Process Process Flow Diagram</td>
<td>C-11</td>
</tr>
<tr>
<td>A.6 Ethylene From Ethane by Conventional Steam Cracking Process Flow Diagram</td>
<td>C-17</td>
</tr>
<tr>
<td>A.7 Polypropylene ICP by a Fluidized Bed Process (Unipol™ Technology)</td>
<td>C-29</td>
</tr>
</tbody>
</table>
TABLES

2.1 Inventory Analysis of Production and Landfill PLA vs. PP ... 2-3
2.2 Net Greenhouse Gas Emissions for Production and Landfill PLA vs. PP ... 2-4
2.3 Lactic Acid Evaporator Sensitivity ... 2-5
2.4 Greenhouse Gas Emissions Methane Sensitivity ... 2-6
3.1 Supply/Demand for Biodegradable Polymers by Major Region, 1998 3-2
3.2 Thermoplastics Used in Packaging .. 3-4
3.3 Recovery, Combustion and Discards of U.S. Municipal Solid Waste, 1980-2000. 3-4
3.4 Plastics in U.S. Municipal Solid Waste (1996) .. 3-5
3.5 Solid Waste Tipping Fees (2000) .. 3-5
3.6 Producers of Lactic Acid .. 3-12
4.1 Categories of Environmental Impact Indicators .. 4-3
4.2 Groups of Environmental Impact Categories .. 4-7
4.3 Impacts of Land Use .. 4-8
4.4 Climate Change ... 4-8
4.5 Acidification ... 4-9
4.6 Eutrophication ... 4-9
4.7 Eco-Profile Energy Table ... 4-10
4.8 APME Polymer Eco-Profiles ... 4-11
4.9 APME Polymer Conversion Eco-Profiles .. 4-12
6.1 Primary Fuels to Produce 1 MJ Delivered Electricity .. 6-2
6.2 U.S. Corn Fertilizer Use in 2000 .. 6-3
6.3 Fertilizer Nutrient Content .. 6-3
6.4 Nitrogen and Phosphate Fertilizers Materials and Utilities Consumption Summary .. 6-4
6.5 Fertilizer Transportation .. 6-5
6.6 Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of Ammonia ... 6-5
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of Ammonia Nitrate</td>
</tr>
<tr>
<td>6.8</td>
<td>Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of UREA</td>
</tr>
<tr>
<td>6.9</td>
<td>Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of DAP</td>
</tr>
<tr>
<td>6.10</td>
<td>Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of Potassium Chloride</td>
</tr>
<tr>
<td>6.11</td>
<td>Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of Atrazine</td>
</tr>
<tr>
<td>6.12</td>
<td>Energy Related Inputs to Grow Corn 1991 Farm Costs and Returns Survey</td>
</tr>
<tr>
<td>6.13</td>
<td>Cumulative Gross Primary Fuels and Feedstock's Required to Produce 1 Bushel of Corn</td>
</tr>
<tr>
<td>6.14</td>
<td>Summary of Energy Requirements to Produce 1 Bushel of Corn</td>
</tr>
<tr>
<td>6.15</td>
<td>Wet Corn Mill Industry Statistics 1997 Economic Census</td>
</tr>
<tr>
<td>6.16</td>
<td>Cumulative Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of Dextrose</td>
</tr>
<tr>
<td>6.17</td>
<td>Lactic Acid by pH 6 Fermentation Materials and Utilities Consumption Summary</td>
</tr>
<tr>
<td>6.18</td>
<td>Cumulative Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of Lactic Acid</td>
</tr>
<tr>
<td>6.19</td>
<td>Lactic Acid Energy Consumption</td>
</tr>
<tr>
<td>6.20</td>
<td>Lactide Production and Polymerization to PLA Materials and Utilities Consumption Summary</td>
</tr>
<tr>
<td>6.21</td>
<td>Cumulative Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of Polylactide</td>
</tr>
<tr>
<td>6.22</td>
<td>8 Ounce PLA Yogurt Cup Package Weight and Utilities Consumption Summary</td>
</tr>
<tr>
<td>6.23</td>
<td>Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of PLA Thermoformed Package</td>
</tr>
<tr>
<td>6.24</td>
<td>Gross Primary Fuels and Feedstock's Required to Produce and Landfill 1 Kg of PLA Thermoformed Package</td>
</tr>
<tr>
<td>6.25</td>
<td>Gross Primary Fuels and Feedstock's Required to Produce and Landfill PLA Package for 1 Ton (1,000 Kg) of Yogurt</td>
</tr>
</tbody>
</table>
TABLES (Continued)

6.26 NGL Recovery by The Expander Process
Materials and Utilities Consumption Summary ... 6-19
6.27 Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of NGL 6-20
6.28 Ethylene and Propylene by Steam Cracking
Materials and Utilities Consumption Summary ... 6-21
6.29 Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of Ethylene or Propylene ... 6-21
6.30 PP by a Fluidized Bed Process
Materials and Utilities Consumption Summary ... 6-22
6.31 Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of Polypropylene .. 6-22
6.32 8 Ounce PP Yogurt Cup
Package Weight and Utilities Consumption Summary.. 6-23
6.33 Gross Primary Fuels and Feedstock's Required to Produce 1 Kg of PP Thermoformed Package .. 6-24
6.34 Gross Primary Fuels and Feedstock's Required to Produce and Landfill 1 Kg of PP Thermoformed Package.. 6-25
7.1 IPCC Greenhouse Gas Metrics... 7-2
7.2 U.S. Carbon Coefficients for Selected Fuels Kg Carbon Equivalent Per Million BTUs ... 7-3
7.3 Net Greenhouse Gas Emissions from Landfilling MTCE/WET Ton 7-4
7.4 Greenhouse Gas Emissions from Energy Consumption to Produce and Landfill 1 Kg of PLA Thermoformed Package .. 7-5
7.5 Net Greenhouse Gas Emissions to Produce and Landfill PLA Thermoformed Package .. 7-6
7.6 Greenhouse Gas Emissions from Energy Consumption to produce and Landfill 1 Kg of PP Thermoformed Package .. 7-7
7.7 Net Greenhouse Gas Emissions to Produce and Landfill PP Thermoformed Package .. 7-7
8.1 APME Gross Energy Ranges.. 8-1
8.2 Corn Wet Milling Allocation Sensitivity .. 8-2
8.3 Lactic Acid Energy ... 8-3
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Lactic Acid Evaporator Sensitivity</td>
<td>8-4</td>
</tr>
<tr>
<td>8.5</td>
<td>PLA Yogurt Cup Weight Sensitivity</td>
<td>8-5</td>
</tr>
<tr>
<td>8.6</td>
<td>Greenhouse Gas Emissions Methane Sensitivity (JMTCE per Kg PLA)</td>
<td>8-6</td>
</tr>
<tr>
<td>A.1</td>
<td>Lactic Acid by pH6 Fermentation Stream Flows</td>
<td>A-3</td>
</tr>
<tr>
<td>A.2</td>
<td>PLA by Ring-Opening Polymerization Stream Flows</td>
<td>A-5</td>
</tr>
<tr>
<td>A.4</td>
<td>Ethylene From Ethane by Steam Cracking Stream Flows</td>
<td>A-14</td>
</tr>
<tr>
<td>A.5</td>
<td>Unipol Process for Polypropylene ICP With Shac™ Ziegler-Natta Catalyst Stream Flows</td>
<td>A-24</td>
</tr>
</tbody>
</table>