Abstract
Process Economics Program Report 115B
ENVIRONMENTALLY DEGRADABLE POLYMERS
(December 1994)

First generation biodegradable polymers, which were largely commercialized in the 1980s, did not satisfy the public’s view of complete degradation. Second generation polymers have recently been introduced and promoted as fully biodegradable by the industry. However, these new polymers are much higher priced than the commodity polymers typically used in packaging applications. The industry is currently working toward bringing down the price of biodegradable polymers by increasing production capacity and improving process technology.

This supplementary report reviews the market conditions and important technical progress made in biodegradable polymers since PEP Report 115A (of the same title) was issued in April 1991. The economics developed in this report address the four major biodegradable polymers that are commercially available:

- Starch-based polymers
- Polylactides
- Polyhydroxyalkanoates
- Polycaprolactone.

For those in the biodegradable polymers business, this report will be useful for its extensive review of recently published literature and the comparative economics it provides. The report’s discussion of the underlying principles of biodegradation will also be useful for those developing applications in this field.
CONTENTS

1 INTRODUCTION 1-1

2 SUMMARY 2-1

 GENERAL ASPECTS 2-1
 Starch-Based Polymers 2-2
 Polylactides 2-2
 Polyhydroxyalkanoates 2-2
 Polycaprolactone 2-3

 TECHNICAL ASPECTS 2-3
 Starch-Based Polymers 2-3
 Polylactides 2-3
 Polyhydroxyalkanoates 2-4
 Polycaprolactone 2-4

 ECONOMIC ASPECTS 2-4

3 INDUSTRY STATUS 3-1

 INTRODUCTION 3-1
 SOLID WASTE DISPOSAL PATTERNS 3-2
 LEGISLATION AND REGULATION 3-2
 POLYVINYL ALCOHOL 3-3
 POLYLACTIDE 3-5
 Lactic Acid Production 3-5
 Lactic Acid Polymers 3-6
 Lactide Production 3-7
 STARCH-BASED POLYMERS 3-7
 ALIPHATIC POLYESTERS 3-9
 Polyhydroxybutyrate-Valerate 3-9
 Polycaprolactone 3-10
CONTENTS (Continued)

4 BIODEGRADATION OF POLYMERS 4-1
 GENERAL CONSIDERATIONS 4-1
 Biodegradable Section 4-1
 Environmental Fate Section 4-2
 Photodegradable Section 4-2
 Biodegradable Section 4-2
 Photodegradable Section 4-2
 Chemical Degradable Section 4-2
 BIODEGRADATION MECHANISMS 4-3
 Naturally Biodegradable Polymers 4-4
 Poly(Glycolic Acid)/Poly(Lactic Acid) 4-4
 Poly(ε-Caprolactone) 4-5
 Poly(Hydroxybutyrate)/Poly(Hydroxyvalerate) 4-8
 Synthetic Polymers with Biodegradable Fillers 4-10

5 STARCH-BASED POLYMERS 5-1
 CHEMISTRY 5-1
 Starch Modification 5-2
 REVIEW OF STARCH-BASED POLYMERS 5-4
 STARCH/VINYL ALCOHOL COPOLYMER BLENDS 5-4
 OTHER STARCH/THERMOPLASTIC BLENDS 5-6
 PROCESS DESCRIPTION 5-7
 PROCESS DISCUSSION 5-12
 Selection of Design Patent 5-12
 Waste Treatment 5-12
 CAPITAL AND PRODUCTION COSTS 5-12
 DISCUSSION OF CAPITAL COST AND PRODUCT VALUE 5-12
7 Polyhydroxyalkanoates (Concluded)

PROCESS DESCRIPTION
- Fermentation (Section 100)
- Extraction and Purification (Section 200)

PROCESS DISCUSSION
- Bacterial Fermentation
- Carbon Substrate
- Extraction and Purification
- Waste Treatment
- Materials of Construction

CAPITAL AND PRODUCTION COSTS

DISCUSSION OF PRODUCT VALUE

8 Polyhcaprolactone

CHEMISTRY

PROCESS REVIEW

PROCESS DESCRIPTION

PROCESS DISCUSSION
- Selection of Design Patent
- Waste Treatment

CAPITAL AND PRODUCTION COSTS

DISCUSSION OF PRODUCT VALUE

APPENDIX A: Patent Summary Tables

APPENDIX B: Design and Cost Bases

APPENDIX C: Product Datasheets

APPENDIX D: Equipment Suppliers

APPENDIX E: Cited References

APPENDIX F: Patent References by Company

APPENDIX G: Process Flow Diagrams
ILLUSTRATIONS

4.1 In Vivo and In Vitro Degradation of Poly(Glycolic Acid-Co-Lactic Acid) 4-6
4.2 Property and Weight Loss Versus Time in Polycaprolactone Burial Studies 4-7
4.3 PHB Biodegradation Rate Versus Crystallinity 4-9
4.4 Enzymatic Degradation Profiles of PHB and PHBV 4-11
4.5 Aerobic Biodegradation of Mater-Bi®, Computer Paper, and Paper Bags 4-13
5.1 Starch-Based Polymers Process Flow Diagram 5-11
5.2 Starch-Based Polymers Product Value Versus Plant Capacity 5-21
6.1 Poly(l-Lactide) from Lactic Acid Process Flow Diagram G-3
6.2 Polylactide from Lactic Acid Product Value Versus L-Lactic Acid Price 6-22
7.1 PHBV by Bacterial Fermentation Process Flow Diagram G-5
7.2 PHBV by Bacterial Fermentation Effect of Operating Level and Plant Capacity on Product Value 7-22
8.1 Polycaprolactone from ε-Caprolactone Process Flow Diagram G-7
TABLES

2.1 Biodegradable Polymers
Manufacturing Cost Summary 2-6

3.1 1992 Polyvinyl Alcohol Consumption 3-3

3.2 PVA Viscosity, Degree of Hydrolysis, and Price 3-4

3.3 Producers of Polyvinyl Alcohol 3-11

3.4 Producers of Lactic Acid 3-13

3.5 Producers of Biodegradable Polymers (Except Polyvinyl Alcohol) 3-14

4.1 PHB Biodegradation in Various Environments 4-10

4.2 Starch-Based Polymer Biodegradation Rates 4-12

5.1 Starch-Based Polymers
Patent Summary A-3

5.2 Starch-Based Polymers
Design Bases 5-8

5.3 Starch-Based Polymers
Major Equipment 5-9

5.4 Starch-Based Polymers
Utilities Summary 5-10

5.5 Starch-Based Polymers
Total Capital Investment 5-14

5.6 Starch-Based Polymers
Production Costs 5-15

5.7 Starch-Based Polymers
Major Equipment 5-17

5.8 Starch-Based Polymers
Total Capital Investment 5-18

5.9 Starch-Based Polymers
Production Costs 5-19

6.1 Lactide
Patent Summary A-16
TABLES (Continued)

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Polylactide Patent Summary</td>
<td>A-22</td>
</tr>
<tr>
<td>6.3</td>
<td>Polylactide from L-Lactic Acid Design Bases and Assumptions</td>
<td>6-9</td>
</tr>
<tr>
<td>6.4</td>
<td>Polylactide from L-Lactic Acid Stream Flows</td>
<td>6-11</td>
</tr>
<tr>
<td>6.5</td>
<td>Polylactide from L-Lactic Acid Major Equipment</td>
<td>6-12</td>
</tr>
<tr>
<td>6.6</td>
<td>Polylactide from L-Lactic Acid Utilities Summary</td>
<td>6-14</td>
</tr>
<tr>
<td>6.7</td>
<td>Polylactide from L-Lactic Acid Total Capital Investment</td>
<td>6-17</td>
</tr>
<tr>
<td>6.8</td>
<td>Polylactide from L-Lactic Acid Capital Investment by Section</td>
<td>6-18</td>
</tr>
<tr>
<td>6.9</td>
<td>Polylactide from L-Lactic Acid Production Costs</td>
<td>6-19</td>
</tr>
<tr>
<td>6.10</td>
<td>Polylactide from L-Lactic Acid Direct Costs by Section ($1,000/Yr)</td>
<td>6-21</td>
</tr>
<tr>
<td>7.1</td>
<td>Properties of PP, PHB, and PHBV</td>
<td>7-3</td>
</tr>
<tr>
<td>7.2</td>
<td>Polyhydroxyalkanoates Patent Summary</td>
<td>A-29</td>
</tr>
<tr>
<td>7.3</td>
<td>PHBV by Bacterial Fermentation Design Bases</td>
<td>7-7</td>
</tr>
<tr>
<td>7.4</td>
<td>PHBV by Bacterial Fermentation Stream Flows</td>
<td>7-10</td>
</tr>
<tr>
<td>7.5</td>
<td>PHBV by Bacterial Fermentation Major Equipment</td>
<td>7-11</td>
</tr>
<tr>
<td>7.6</td>
<td>PHBV by Bacterial Fermentation Utilities Summary</td>
<td>7-13</td>
</tr>
<tr>
<td>7.7</td>
<td>PHBV by Bacterial Fermentation Total Capital Investment</td>
<td>7-17</td>
</tr>
</tbody>
</table>
TABLES (Concluded)

7.8 PHBV by Bacterial Fermentation
Capital Investment by Section
7-18

7.9 PHBV by Bacterial Fermentation
Production Costs
7-19

7.10 PHBV by Bacterial Fermentation
Direct Costs by Section ($1,000/Yr)
7-21

8.1 Film Properties of LLDPE and PCL
8-2

8.2 Polycaprolactone
Patent Summary
A-33

8.3 PCL from ε-Caprolactone
Design Bases
8-4

8.4 PCL from ε-Caprolactone
Stream Flows
8-6

8.5 PCL from ε-Caprolactone
Major Equipment
8-7

8.6 PCL from ε-Caprolactone
Utilities Summary
8-8

8.7 PCL from ε-Caprolactone
Total Capital Investment
8-10

8.8 PCL from ε-Caprolactone
Production Costs
8-11

C.1 Mater-Bi Product Datasheet-Grade AI05H
C-3

C.2 Mater-Bi Product Datasheet-Grade SA031
C-3

C.3 Mater-Bi Product Datasheet (Experimental)-Grade 1128 RR
C-4

C.4 Mater-Bi Product Datasheet-Grade ZF03U
C-4

C.5 Mater-Bi Product Datasheet-Grade ZI01U
C-5

C.6 BIOPOL™ Properties
C-6

C.7 TONE® Polymers Typical Physical Properties
C-7