Global demand for methanol, which grew at an annualized rate of 4.3% in 1996-2001, is expected to slow to an annual growth rate of 2.1% through 2006. A key factor depressing the projected demand for methanol is the current political controversy over one of its largest derivative markets—methyl tertiary-butyl ether (MTBE), an additive in reformulated gasoline. On the other hand, recent advances in methanol plant production technology coupled with mega-plant economies of scale may greatly reduce methanol production costs, especially in regions with currently underutilized low cost hydrocarbon feedstocks, such as “stranded” natural gas or petroleum refinery residues. Once this low-cost methanol becomes available in quantity and a marketing infrastructure becomes operative, a number of new markets for methanol may emerge.

In this report, we have evaluated one of the most promising new applications for methanol: the conversion of methanol to light olefins. We have developed conceptual designs and economics of the two processes currently available for license—the UOP/Hydro MTO (methanol-to-olefins) technology based on a modified SAPO-34 catalyst, and Lurgi’s MTP (methanol-to-propylene) process based on a modified ZSM-5 catalyst. Our analysis shows that both processes have product values that are competitive with those of conventional technologies when methanol is priced below 30¢/gal.

This report also presents comparative evaluations of several processes for producing formaldehyde and acetic acid, which are two commercially important derivatives of methanol. Our conceptual design and economic analysis of the recent Topsøe SR (Series Reactor) formaldehyde process indicate that the technology offers economic advantages over the conventional metal oxide-catalyzed process.
CONTENTS

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1
 GENERAL ASPECTS .. 2-1
 TECHNICAL ASPECTS ... 2-2
 Methanol to Olefins Technology ... 2-2
 Formaldehyde Technology ... 2-2
 Acetic Acid Technology .. 2-3
 PROCESS ECONOMICS ... 2-4
 Methanol to Ethylene and Propylene ... 2-4
 Methanol to Propylene ... 2-6
 Formaldehyde from Methanol ... 2-8
 Acetic Acid from Methanol .. 2-10

3 INDUSTRY STATUS .. 3-1
 METHANOL SUPPLY AND DEMAND .. 3-1
 Regional Capacity Trends .. 3-1
 Methanol Prices .. 3-4
 METHANOL DERIVATIVES .. 3-5
 Formaldehyde .. 3-8
 MTBE .. 3-11
 Acetic Acid .. 3-14
 Other Uses .. 3-17
 EMERGING METHANOL APPLICATIONS ... 3-17
 Methanol to Olefins .. 3-17
 Fuel Applications .. 3-18
 Methanol to Dimethyl Ether .. 3-18
CONTENTS (Continued)

4 OLEFINS FROM METHANOL ... 4-1

COMMERCIAL DEVELOPMENTS .. 4-1
TECHNOLOGY REVIEW .. 4-2
ZSM-5 Catalyst .. 4-2
SAPO-34 Catalyst .. 4-3
Reactor Design and Operation ... 4-4
Product Recovery .. 4-5
METHANOL TO OLEFINS BY THE UOP/HYDRO PROCESS 4-5
Process Description .. 4-5
 Section 100 - Methanol Conversion .. 4-5
 Section 200 - Product Separation ... 4-6
Process Discussion .. 4-18
Cost Estimates ... 4-19
Comparison with Steam Cracking Process .. 4-29
MTO Applications .. 4-29
METHANOL TO PROPYLENE BY THE LURGI MTP PROCESS 4-31
Process Description .. 4-31
 Section 100 - Methanol Conversion .. 4-31
 Section 200 - Propylene Recovery .. 4-32
Process Discussion .. 4-43
Cost Estimates ... 4-44
Comparison with Other Technologies ... 4-52
MTP Applications .. 4-52

5 FORMALDEHYDE FROM METHANOL ... 5-1

CHEMISTRY .. 5-1
Metallic Silver Catalysis ... 5-1
Metal Oxide Catalysis .. 5-2
<table>
<thead>
<tr>
<th>CONTENTS (Concluded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde Solutions .. 5-2</td>
</tr>
<tr>
<td>TECHNOLOGY REVIEW .. 5-4</td>
</tr>
<tr>
<td>Metal Oxide Catalyst Process .. 5-4</td>
</tr>
<tr>
<td>Metallic Silver Catalyst Process ... 5-6</td>
</tr>
<tr>
<td>FORMALDEHYDE BY THE TOPSØE SR PROCESS ... 5-10</td>
</tr>
<tr>
<td>Process Description .. 5-10</td>
</tr>
<tr>
<td>Process Discussion ... 5-15</td>
</tr>
<tr>
<td>Cost Estimates .. 5-15</td>
</tr>
<tr>
<td>COMPARISON OF FORMALDEHYDE PROCESSES ... 5-21</td>
</tr>
<tr>
<td>6 ACETIC ACID FROM METHANOL ... 6-1</td>
</tr>
<tr>
<td>COMMERCIAL DEVELOPMENTS ... 6-1</td>
</tr>
<tr>
<td>CHEMISTRY .. 6-2</td>
</tr>
<tr>
<td>Homogeneous Rhodium Catalyst System ... 6-2</td>
</tr>
<tr>
<td>Heterogeneous Rhodium Catalyst System ... 6-3</td>
</tr>
<tr>
<td>Homogeneous Iridium Catalyst System ... 6-3</td>
</tr>
<tr>
<td>TECHNOLOGY REVIEW .. 6-4</td>
</tr>
<tr>
<td>Celanese Technology .. 6-4</td>
</tr>
<tr>
<td>BP Cativa™ Technology .. 6-6</td>
</tr>
<tr>
<td>Chiyoda/UOP Acetica™ Technology .. 6-8</td>
</tr>
<tr>
<td>PROCESS ECONOMICS .. 6-10</td>
</tr>
<tr>
<td>APPENDIX A: PATENT SUMMARY TABLES .. A-1</td>
</tr>
<tr>
<td>APPENDIX B: DESIGN AND COST BASES .. B-1</td>
</tr>
<tr>
<td>APPENDIX C: CITED REFERENCES ... C-1</td>
</tr>
<tr>
<td>APPENDIX D: PATENT REFERENCES BY COMPANY .. D-1</td>
</tr>
<tr>
<td>APPENDIX E: PROCESS FLOW DIAGRAMS .. E-1</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

3.1 U.S. Spot Prices for Methanol 1984-2001 ... 3-5
3.2 Methanol Consumption by Region and by End Use ... 3-7
4.1 Methanol to Olefins by the UOP/Hydro Process
 Process Flow Diagram .. E-3
4.2 Methanol to Propylene by the UOP/Hydro Process
 Effect of Plant Capacity on Investment Costs .. 4-22
4.3 Methanol to Propylene by the UOP/Hydro Process
 Effect of Methanol Price and Plant Capacity on Ethylene Product Value 4-25
4.4 Methanol to Propylene by the UOP/Hydro Process
 Production Economics at Historical Chemical Prices
 Case 1: Methanol from Mega-Plant at 25 ¢/gal .. 4-26
4.5 Methanol to Propylene by the UOP/Hydro Process
 Production Economics at Historical Chemical Prices
 Case 2: Methanol at Prevailing U.S. Prices .. 4-27
4.6 Methanol to Propylene by the UOP/Hydro Process
 Historical Pre-Tax Return on Investment (ROI) .. 4-28
4.7 Methanol to Propylene by the Lurgi MTP Process
 Process Flow Diagram .. E-7
4.8 Methanol to Propylene by the Lurgi MTP Process
 Effect of Plant Capacity on Investment Costs .. 4-48
4.9 Methanol to Propylene by the Lurgi MTP Process
 Effect of Methanol Price on Production Cost and Product Value 4-51
5.1 Formaldehyde from Methanol with Ferric Molybdate Catalyst 5-5
5.2 Formaldehyde from Methanol by Conventional Silver Catalyst Process 5-7
5.3 Formaldehyde from Methanol by Silver Catalyst WGR Process 5-9
5.4 Formaldehyde from Methanol by the Topsøe SR Process
 Process Flow Diagram .. E-11
5.5 Formaldehyde from Methanol by the Topsøe SR Process
 Effect of Operating Level and Plant Capacity on Formaldehyde Product Value 5-19
5.6 Formaldehyde from Methanol by the Topsøe SR Process
 Effect of Methanol Price on Production Cost and Product Value 5-20
ILLUSTRATIONS (Concluded)

6.1 Acetic Acid from Methanol by the Celanese Technology.. 6-5
6.2 Acetic Acid from Methanol by the BP Cativa™ Technology................................... 6-7
6.3 Acetic Acid from Methanol by the Chiyoda/UOP Acetica™ Technology................. 6-9
TABLES

2.1 Methanol to Olefins by the UOP/Hydro Process
Comparison with Steam Cracking ... 2-5

2.2 Methanol to Olefins by the Lurgi MTP Process
Comparison with Other Technologies ... 2-7

2.3 Formaldehyde from Methanol
Comparison of Process Economics .. 2-9

2.4 Acetic Acid from Methanol
Comparison of Process Economics .. 2-11

3.1 Historical and Projected World Methanol Capacity, Production, and
Consumption by Region .. 3-2

3.2 World Methanol Consumption by End Use .. 3-6

3.3 Historical and Projected World Formaldehyde Capacity, Production, and
Consumption by Region ... 3-9

3.4 Historical and Projected World MTBE Capacity, Production, and
Consumption by Region .. 3-12

3.5 Historical and Projected World Acetic Acid Capacity, Production, and
Consumption by Region .. 3-15

4.1 Conversion of Methanol to Olefins
Patent Summary .. A-3

4.2 Methanol to Olefins by the UOP/Hydro Process
Design Bases and Assumptions .. 4-8

4.3 Methanol to Olefins by the UOP/Hydro Process
Stream Flows .. 4-9

4.4 Methanol to Olefins by the UOP/Hydro Process
Major Equipment ... 4-14

4.5 Methanol to Olefins by the UOP/Hydro Process
Utilities Summary ... 4-17

4.6 Methanol to Olefins by the UOP/Hydro Process
Total Capital Investment .. 4-20

4.7 Methanol to Olefins by the UOP/Hydro Process
Capital Investment by Section ... 4-21

4.8 Methanol to Olefins by the UOP/Hydro Process
Production Costs ... 4-23

4.9 Methanol to Olefins by the UOP/Hydro Process
Comparison with Steam Cracking .. 4-30
TABLES (Concluded)

4.10 Methanol to Propylene by the Lurgi MTP Process
Design Bases and Assumptions ... 4-34

4.11 Methanol to Propylene by the Lurgi MTP Process
Stream Flows .. 4-35

4.12 Methanol to Propylene by the Lurgi MTP Process
Major Equipment ... 4-40

4.13 Methanol to Propylene by the Lurgi MTP Process
Utilities Summary ... 4-42

4.14 Methanol to Propylene by the Lurgi MTP Process
Total Capital Investment ... 4-46

4.15 Methanol to Propylene by the Lurgi MTP Process
Capital Investment by Section ... 4-47

4.16 Methanol to Propylene by the Lurgi MTP Process
Production Costs ... 4-49

4.17 Methanol to Propylene by the Lurgi MTP Process
Comparison with Other Technologies .. 4-53

5.1 Formaldehyde from Methanol
Patent Summary ... A-18

5.2 Formaldehyde from Methanol by the Topsøe SR Process
Design Bases and Assumptions ... 5-11

5.3 Formaldehyde from Methanol by the Topsøe SR Process
Stream Flows .. 5-12

5.4 Formaldehyde from Methanol by the Topsøe SR Process
Major Equipment ... 5-13

5.5 Formaldehyde from Methanol by the Topsøe SR Process
Total Capital Investment ... 5-16

5.6 Formaldehyde from Methanol by the Topsøe SR Process
Production Costs ... 5-17

5.7 Formaldehyde from Methanol by the Topsøe SR Process
Comparison of Process Economics ... 5-22

6.1 Acetic Acid from Methanol
Comparison of Process Economics ... 6-11