Both polybutylene terephthalate (PBT) and polyethylene terephthalate (PET) polyesters are produced from terephthalic acid and a diol. PBT uses 1,4-butanediol (BDO), whereas PET uses ethylene glycol. Since PBT’s introduction in 1970 (in competition with PET), its market has grown rapidly. The ease of injection molding it affords and its rapid crystallization rate allow customers to take advantage of PBT's inherent heat resistance in a wide variety of automotive and other applications. Numerous applications are also being developed for higher molecular weight PBT resins in the extrusion area.

Improvements in catalyst technology have allowed reduction in the size of the early-stage reactors, and with new condensation technology BDO can be captured and recycled without the purification previously required. Solid state polymerization technology now allows continuous polymerization, which replaces the older batch technology. This report updates two previous PEP reports on the technology and cost of producing PBT.

The sizable growth in the market for PBT has increased demand for BDO. We examine five processes for producing BDO. In the most widely used process, which is based on acetylene and formaldehyde, advances in both reaction and purification have taken place. Another process, which is growing rapidly, is based on propylene oxide (PO); for this process, improvements in hydrogenation have been combined with new isomerization technology. We examine these two processes in detail.

In three other important commercial or near commercial processes, butadiene (BD), maleic anhydride (MA) via dimethyl maleate, and butane are used as starting materials. We update previous studies of these routes to provide a basis for comparing technologies and relative economics.

Capital costs are highest for the butane and the BD routes, lower for both the acetylene and PO routes, and lowest for the MA route. When product values (projected sales prices) for BDO from plants of similar size are compared, the product value of the acetylene route is the highest, followed by BDO from the BD and PO routes; the values for the MA and the butane routes are the lowest.

This report will be of interest to those that are considering producing or already produce BDO or PBT; to those that produce or are considering producing acetylene, PO, BD, butane, or MA, which are consumed in producing BDO; and to those that produce tetrahydrofuran, which constitutes the largest single use for BDO.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD</td>
<td>Butadiene</td>
</tr>
<tr>
<td>BDO</td>
<td>1,4-Butanediol</td>
</tr>
<tr>
<td>BYO</td>
<td>Butynediol</td>
</tr>
<tr>
<td>CSTR</td>
<td>Continuously stirred tank reactor</td>
</tr>
<tr>
<td>DMM</td>
<td>Dimethyl maleate</td>
</tr>
<tr>
<td>DMT</td>
<td>Dimethyl terephthalate</td>
</tr>
<tr>
<td>DPT</td>
<td>Davy Process Technology</td>
</tr>
<tr>
<td>GBL</td>
<td>gamma-Butyrolactone</td>
</tr>
<tr>
<td>HBA</td>
<td>4-Hydroxy-1-butylaldehyde</td>
</tr>
<tr>
<td>ITRI</td>
<td>Industrial Technology Research Institute of Taiwan</td>
</tr>
<tr>
<td>MA</td>
<td>Maleic anhydride</td>
</tr>
<tr>
<td>MFR</td>
<td>Melt flow rate</td>
</tr>
<tr>
<td>MMM</td>
<td>Monomethyl maleate</td>
</tr>
<tr>
<td>MPD</td>
<td>2-Methyl-1,3-propanediol</td>
</tr>
<tr>
<td>PBT</td>
<td>Polybutylene terephthalate</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene terephthalate</td>
</tr>
<tr>
<td>PO</td>
<td>Propylene oxide</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TPA</td>
<td>Terephthalic acid</td>
</tr>
<tr>
<td>TPT</td>
<td>Tetraisopropyl titanate</td>
</tr>
</tbody>
</table>
CONTENTS

GLOSSARY .. xiii

1 INTRODUCTION ... 1-1

2 SUMMARY ... 2-1
 GENERAL ASPECTS ... 2-1
 Polybutylene Terephthalate Market Growth ... 2-1
 1,4-Butanediol Market Growth ... 2-1
 ECONOMIC ASPECTS ... 2-1
 PBT Economics ... 2-1
 BDO Economics ... 2-2
 MA (via DMM) ... 2-5

3 TECHNICAL ASPECTS .. 2-6
 BDO from Acetylene ... 2-6
 BDO from PO .. 2-7
 BDO from BD .. 2-8
 BDO from MA via DMM ... 2-8
 BDO from Butane via DMM ... 2-8

3 INDUSTRY STATUS ... 3-1
 1,4-BUTANEDIOL ... 3-1
 U.S. Consumption .. 3-1
 Western European Consumption ... 3-1
 Japanese Consumption ... 3-1
 Other Asia Consumption .. 3-2
 Total BDO Capacity .. 3-2
 Acetylene Based Capacity .. 3-8
 Propylene Oxide Based Capacity ... 3-8
 Butadiene and Maleic Anhydride Based Capacity 3-8
 Butane Based Capacity ... 3-8
CONTENTS (Continued)

3 INDUSTRY STATUS (Concluded)

POLYBUTYLENE TEREPTHALATE 3-8
Competitive Polyesters 3-8
Reinforcing Agents and Fillers 3-9
Fabrication ... 3-9
CAPACITY ... 3-9
Worldwide Capacity .. 3-9
U.S. Capacity ... 3-13
Western European Capacity 3-13
Japanese Capacity .. 3-14
Korean and Taiwanese Capacity 3-14

4 CHEMISTRY .. 4-1
PREPARATION OF 1,4-BUTANEDIOL 4-1
From Acetylene .. 4-1
From Propylene Oxide 4-1
From Butadiene ... 4-1
From Maleic Anhydride 4-1
From Butane ... 4-2
BDO from Acetylene 4-2
BDO from PO ... 4-3
BDO from BD ... 4-4
BDO from MA via Dimethyl Maleate 4-5
BDO from Butane ... 4-6
PREPARATION OF POLYBUTYLENE TEREPTHALATE 4-6
Esterification .. 4-7
Transesterification 4-7
Polymerization ... 4-8
Side reactions .. 4-8
1,4-BUTANEDIOL FROM ACETYLENE ... 5-1
REVIEW OF PROCESSES ... 5-1
Formaldehyde Addition to Acetylene ... 5-1
Hydrogenation ... 5-2
PRODUCT RECOVERY .. 5-2
Crystallization .. 5-2
Clean-up before distillation .. 5-3
Distillation ... 5-3
Final Purification of BDO ... 5-3
BDO PROCESS DESCRIPTION ... 5-3
Section 100—BYO Production ... 5-3
Section 200—Hydrogenation ... 5-4
Section 300—BDO Recovery ... 5-5
BDO PROCESS DISCUSSION ... 5-14
Section 100—Formaldehyde Addition to Acetylene 5-14
Section 200—Hydrogenation ... 5-16
Product Recovery .. 5-17
Material of Construction ... 5-17
Waste Streams .. 5-17
COST ESTIMATES .. 5-18
Capital Costs ... 5-18
Production Costs .. 5-18
Production Costs as a Function of Raw Material Costs 5-19
1,4-BUTANEDIOL FROM PROPYLENE OXIDE ... 6-1
REVIEW OF PROCESSES ... 6-1
PO Isomerization to Allyl Alcohol ... 6-1
Hydroformylation of Allyl Alcohol .. 6-2
Hydrogenation .. 6-2
Distillation .. 6-2
PROCESS DESCRIPTION ... 6-3
CONTENTS (Continued)

6 1,4-BUTANEDIOL FROM PROPYLENE OXIDE (Concluded)
 Section 100—Isomerization ...6-3
 Section 200—Hydroformylation ..6-4
 Section 300—Hydrogenation and Purification ..6-4
 PROCESS DISCUSSION ..6-16
 PO Isomerization to Allyl Alcohol ..6-16
 Hydroformylation of Allyl Alcohol ...6-17
 Hydrogenation ..6-19
 Product Recovery ..6-20
 Materials of Construction ...6-20
 PROCESS DISCUSSION (Concluded)
 Waste Streams ...6-21
 COST ESTIMATES ..6-21
 Capital Costs ...6-21
 Production Costs ...6-22

7 1,4-BUTANEDIOL FROM BUTADIENE AND ACETIC ACID:
 OTHER COMMERCIAL OR NEAR COMMERCIAL ROUTES7-1
 BUTADIENE SUPPLY ..7-1
 PROCESS DISCUSSION ...7-1
 PROCESS ECONOMICS, BASE CASE ..7-2
 Product Value versus Capital Levels ..7-2
 Product Value versus BD Cost ..7-3

8 1,4-BUTANEDIOL FROM MALEIC ANHYDRIDE VIA DIMETHYL MALEATE:
 OTHER COMMERCIAL OR NEAR COMMERCIAL ROUTES8-1
 MALEIC ANHYDRIDE SUPPLY ...8-1
 BACKGROUND ...8-1
 PROCESS DISCUSSION ...8-1
 PROCESS ECONOMICS ..8-2
 Product value as a Function of Raw Material Cost and By-product Value ..8-3
CONTENTS (Continued)

9 1,4-BUTANEDIOL FROM BUTANE VIA DIMETHYL MALEATE: OTHER COMMERCIAL OR NEAR COMMERCIAL ROUTES..9-1

BUTANE SUPPLY ..9-1
Background ..9-1
PROCESS DISCUSSION ..9-2
Production of MA from butane. ..9-2
Production of BDO from MA via DMM. ...9-2
Butane-to-BDO Integration ...9-3
PROCESS ECONOMICS ..9-3
Economics of Integrating Butane and MA Facilities—
At 100% of the Capital for a Stand-alone MA Plant.................................9-4
Economics of Integrating Butane and MA Facilities—
At 75% of the Capital for a Stand-alone MA Plant.....................................9-4
Economics of Integrating Butane and MA Facilities—
At 50% of the Capital for a Stand-alone MA Plant.....................................9-4
DISCUSSION OF ECONOMICS..9-5

10 POLYBUTYLENE TEREPTHALATE ...10-1

REVIEW OF PROCESSES ..10-1
Routes to PBT ..10-1
Polymer Formation ...10-5
Alternative Approaches for Increasing Molecular Weight10-10
THF By-product Handling Strategy ...10-11
PROCESS DESCRIPTION ..10-12
Raw Material Handling ..10-12
Transesterification ...10-12
Prepolycondensation ...10-12
Polycondensation ..10-12
Solid State polymerization ...10-13
PROCESS DISCUSSION ..10-19
CONTENTS (Concluded)

10 POLYBUTYLENE TEREPHTHALATE (Concluded)

Transesterification ... 10-19
Prepolycondensation ... 10-19
Polycondensation .. 10-20
Solid State Polymerization ... 10-20
General Polymerization Concerns .. 10-20
By-product Methanol and THF Handling ... 10-21
Material Balance Assumptions ... 10-21

PROCESS DISCUSSION (Concluded)

Start-Up Procedures .. 10-21
Capacity ... 10-22

PROCESS ECONOMICS ... 10-22

Capital Investment ... 10-22
Production Costs ... 10-22

APPENDIX A: PATENT SUMMARY TABLES .. A-1

APPENDIX B: DESIGN AND COST BASES .. B-1

APPENDIX C: CITED REFERENCES ... C-1

APPENDIX D: PATENT REFERENCES BY COMPANY .. D-1

APPENDIX E: PROCESS FLOW DIAGRAMS ... E-1
ILLUSTRATIONS

2.1 BDO from BD
Product Value as a Function of Capital Investment and BD Cost2-4

2.2 BDO from MA via DMT
Product Value as a Function of THF Value and MA Cost2-5

5.1 BDO from Acetylene
Product Value as a Function of Raw Material Cost ...E-3

5.2 BDO from Acetylene
Product Value as a Function of Raw Material Cost ...5-24

6.1 BDO from PO ...E-5

6.2 BDO from PO
Product Value as a Function of PO Cost and By-Product Value6-27

7.1 BDO from BD
Product Value as a Function of Capital Investment and BD Cost7-6

8.1 BDO from MA via DMM
Product Value as a Function of THF Value and MA Cost8-7

9.1 BDO from Butane
Product Value as a Function of Capital Investment and Butane Cost9-10

10.1 PBT: Relationship between Intrinsic Viscosity and
Number Average Molecular Weight ..10-2

10.2 PBT: Relationship between Intrinsic Viscosity and Melt Flow Rate10-3

10.3 PBT from DMT and BDO ...E-7
TABLES

2.1 PBT from Dimethyl Terephthalate Production Costs...2-2
2.2 BDO Economics for Major Processes ..2-3
2.3 Economics of Newer BDO Processes ..2-4
3.1 Worldwide BDO Capacity by Producer, 1996...3-3
3.2 Worldwide BDO Capacity by Size, 1996 ..3-6
3.3 Worldwide PBT Capacity by Producer ..3-10
3.4 Worldwide PBT Capacity by Size ..3-12
5.1 BDO from Acetylene Patent Summary ..A-3
5.2 BDO from Acetylene Design Basis for Formaldehyde Addition to Acetylene to Form BY0........5-6
5.3 BDO from Acetylene Design Basis for Hydrogenation of BYO to BDO..........................5-7
5.4 BDO from Acetylene Design Basis for Purification of BDO...5-8
5.5 BDO from Acetylene and Formaldehyde Stream Flows..5-9
5.6 BDO from Acetylene and Formaldehyde Major Equipment ...5-12
5.7 BDO from Acetylene and Formaldehyde Total Capital Investment5-20
5.8 BDO from Acetylene and Formaldehyde Capital Investment by Section.......................5-21
5.9 BDO from Acetylene and Formaldehyde Production Costs ...5-22
6.1 BDO from PO Patent Summary Table ..A-9
6.2 BDO from PO Design Basis for PO Isomerization..6-5
6.3 BDO from PO Design Basis for Hydroformylation ..6-6
6.4 BDO from PO Design Basis for Hydrogenation ..6-8
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>BDO from PO Stream Flows</td>
<td>6-9</td>
</tr>
<tr>
<td>6.6</td>
<td>BDO from PO Major Equipment</td>
<td>6-12</td>
</tr>
<tr>
<td>6.7</td>
<td>BDO from PO Total Capital Investment</td>
<td>6-23</td>
</tr>
<tr>
<td>6.8</td>
<td>BDO from PO Capital Investment by Section</td>
<td>6-24</td>
</tr>
<tr>
<td>6.9</td>
<td>BDO from PO Production Costs</td>
<td>6-25</td>
</tr>
<tr>
<td>7.1</td>
<td>BDO from BD Production Costs</td>
<td>7-4</td>
</tr>
<tr>
<td>8.1</td>
<td>BDO from MA via DMM Total Capital Investment</td>
<td>8-4</td>
</tr>
<tr>
<td>8.2</td>
<td>BDO from MA via DMM Production Costs</td>
<td>8-5</td>
</tr>
<tr>
<td>9.1</td>
<td>BDO from Butane via MA 75% of Butane to MA Capital Production Costs</td>
<td>9-6</td>
</tr>
<tr>
<td>9.2</td>
<td>BDO from Butane via MA 50% of Butane to MA Capital Production Costs</td>
<td>9-8</td>
</tr>
<tr>
<td>10.1</td>
<td>PBT Patent Summary</td>
<td>A-12</td>
</tr>
<tr>
<td>10.2</td>
<td>PBT from DMT Design Basis</td>
<td>10-14</td>
</tr>
<tr>
<td>10.3</td>
<td>PBT from DMT Stream Flows</td>
<td>10-16</td>
</tr>
<tr>
<td>10.4</td>
<td>PBT from DMT Major Equipment</td>
<td>10-17</td>
</tr>
<tr>
<td>10.5</td>
<td>PBT from DMT Total Capital Investment</td>
<td>10-23</td>
</tr>
<tr>
<td>10.6</td>
<td>PBT from DMT Production Costs</td>
<td>10-24</td>
</tr>
</tbody>
</table>