This report, which is the seventh in a series on high-temperature polymers, reviews manufacturing processes, presents preliminary process designs, and estimates capital and production costs for two new polymers: polyphthalamide and polyethylene naphthalate (PEN). In addition, recent patents for liquid-crystal polymers (LCPs) are reviewed, and their manufacturing economics are updated (they were previously treated in PEP Report 86C).

In the process evaluated here, polyphthalamide is made by reacting hexamethylenediamine with a mixture of three acids (terephthalic acid, isophthalic acid, and adipic acid) to form a semicrystalline polyamide that has excellent physical and mechanical properties, outstanding dimensional stability, and good processing characteristics. The economics of making both unfilled and glass-filled grades of polyphthalamide are evaluated.

PEN is chemically related to polyethylene terephthalate (PET), but has mechanical, thermal, and gas barrier properties that are superior to those of PET. PEN is made by a process that is analogous to that used for making PET, starting with ethylene glycol and dimethyl 2,6-naphthalenedicarboxylate.

Introduced several years ago, liquid crystal polyesters have outstanding properties and tractable processing characteristics. The growth rate of these expensive polymers has been lower than predicted, however. We evaluate here two types of LCPs that are made from p-hydroxybenzoic acid: one type uses 6-hydroxy-2-naphthoic acid as the other raw material, and the other type uses both terephthalic acid and 4,4i-dihydroxydiphenyl. (These polymers are similar to Vectra® liquid crystal polyester made by Hoechst Celanese and to Xydar® liquid crystal polyester made by Amoco, respectively.) Both unfilled and glass-filled versions of each polymer are evaluated. In addition, we update the economics of making the monomers p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and 4,4i-dihydroxydiphenyl.

This report will be useful to present and future producers and users of polyphthalamide, PEN, and LCPs, and of other high-temperature polymers with which they compete. In addition, researchers in LCP products will find the extensive summary of recent patents useful.
CONTENTS

GLOSSARY xiii

1 INTRODUCTION 1-1

2 SUMMARY 2-1
 GENERAL ASPECTS 2-1
 ECONOMIC ASPECTS 2-2
 Polyphthalamide 2-2
 Polyethylene Naphthalate 2-2
 Liquid Crystal Polyesters 2-3
 TECHNICAL ASPECTS 2-3
 Polyphthalamide 2-4
 Polyethylene Naphthalate 2-4
 Liquid Crystal Polyesters 2-5
 Xydar® Type of Liquid Crystal Polymer 2-5
 Vectra® Type of Liquid Crystal Polymer 2-5

3 INDUSTRY STATUS 3-1
 POLYPHTHALAMIDE 3-4
 POLYETHYLENE NAPHTHALATE 3-5
 LIQUID CRYSTAL POLYMERS 3-6

4 CHEMISTRY 4-1
 POLYPHTHALAMIDE 4-1
 POLYETHYLENE NAPHTHALATE 4-2
 LIQUID CRYSTAL POLYMERS (LCPS) 4-3
 Xydar® Type of LCP 4-4
 Vectra® Type of LCP 4-4

5 POLYPHTHALAMIDE FROM TEREPTHALIC, ISOPHTHALIC,
 AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE 5-1
 REVIEW OF PROCESSES 5-1
 PROCESS DESCRIPTION 5-2
CONTENTS (Continued)

5 POLYPHTHALAMIDE FROM TEREPTHALIC, ISOPHTHALIC, AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE (Concluded)

PROCESS DISCUSSION 5-15
 Plant Capacity 5-15
 Design Patents 5-15
 Reactor Design 5-15
 Product Composition and Product Properties 5-16
 Pellet Drying 5-17
 Materials of Construction 5-17
 Waste Streams 5-17

CAPITAL AND PRODUCTION COSTS 5-17
 Capital Costs 5-18
 Production Costs 5-18
 G&A, Sales, and Research Expense 5-18
 Relative Importance of Production Cost Items 5-18
 Effect of Return on Investment on Product Value 5-18
 Effect of Plant Capacity on Production Costs 5-19
 Effect of Plant Flexibility on Production Cost 5-19

PRODUCTION COST OF UNFILLED PPA 5-19

6 POLYETHYLENE NAPHTALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL 6-1

REVIEW OF PROCESSES 6-1
 Reaction Conditions 6-2
 Esterification Catalysts 6-3
 Transesterification Catalysts 6-3
 Polymerization Catalysts and Additives 6-3
 Blends and PEN Copolymers 6-3
 PEN Fibers 6-3
 PEN Films 6-3
 PEN Molded Objects 6-3

PROCESS DESCRIPTION, PEN FROM NDC AND EG 6-4
CONTENTS (Continued)

6 POLYETHYLENE NAPHTHALATE FROM DIMETHYL-2,6-
NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL (Concluded)

<table>
<thead>
<tr>
<th>Process Discussed</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Capacity</td>
<td>6-16</td>
</tr>
<tr>
<td>NDC</td>
<td>6-16</td>
</tr>
<tr>
<td>Final Polymerization Reactor</td>
<td>6-16</td>
</tr>
<tr>
<td>Rundown Bins and Blending Bins</td>
<td>6-16</td>
</tr>
<tr>
<td>Heating System</td>
<td>6-17</td>
</tr>
<tr>
<td>Polymer Filters</td>
<td>6-17</td>
</tr>
<tr>
<td>Distillation of Recovered EG</td>
<td>6-17</td>
</tr>
<tr>
<td>Materials of Construction</td>
<td>6-17</td>
</tr>
<tr>
<td>Methanol</td>
<td>6-17</td>
</tr>
<tr>
<td>Waste Streams</td>
<td>6-17</td>
</tr>
<tr>
<td>Unaccounted for Losses</td>
<td>6-17</td>
</tr>
<tr>
<td>Utilities Consumptions</td>
<td>6-18</td>
</tr>
</tbody>
</table>

CAPITAL AND PRODUCTION COSTS, PEN FROM NDC AND EG

- Capital Costs
- Production Costs
- G&A, Sales, and Research Expense
- Relative Importance of Production Cost Items
- Return on Investment

PRODUCTION COST FOR PEN FROM NDA AND EG

POLYBUTYLENE NAPHTHALATE MANUFACTURING COSTS

7 LIQUID CRYSTAL POLYESTERS

REVIEW OF PROCESSES

UPDATED MANUFACTURING COST ESTIMATES

- LCP from HBA, TA, and DHDP
- LCP from HBA and HNA

APPENDIX A: PATENT SUMMARY TABLES

APPENDIX B: DESIGN AND COST BASES

APPENDIX C: CITED REFERENCES
CONTENTS (Concluded)

APPENDIX D: PATENT REFERENCES BY COMPANY D-1
APPENDIX E: PROCESS FLOW DIAGRAMS E-1
ILLUSTRATIONS

5.1 Polyphthalamide from Terephthalic, Isophthalic, and Adipic Acids and Hexamethylene Diamine
Process Flow Diagram E-3

6.1 Polyethylene Naphthalate from Dimethyl-2,6-Naphthalenedicarboxylate and Ethylene Glycol
Process Flow Diagram E-7
TABLES

1.1 Previous PEP Reports in the High-Temperature Polymer Series 1-2

2.1 Cost Summary
Polyphthalamide 2-6

2.2 Cost Summary
Polyethylene Naphthalate and Polybutylene Naphthalate 2-7

2.3 Cost Summary
Liquid Crystal Polyesters 2-8

2.4 Cost Summary
Liquid Crystal Polyesters 2-9

2.5 Cost Summary
DHDP, HNA, and HBA 2-10

3.1 PPA—Industry Status 3-1

3.2 PEN—Industry Status 3-1

3.3 Liquid Crystal Polyesters—Industry Status 3-2

3.4 PPA—Selected Physical Properties 3-3

3.5 Comparison of Selected Physical Properties
of Typical PEN and PET Films 3-3

3.6 Properties of PEN Versus PET for Bottles or Containers 3-3

5.1 POLYPHTHALAMIDE FROM TEREPHTHALIC, ISOPHTHALIC
AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE
Patent Summary
Amoco Patents A-3

5.2 POLYPHTHALAMIDE FROM TEREPHTHALIC, ISOPHTHALIC,
AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE
Design Basis 5-3

5.3 POLYPHTHALAMIDE FROM TEREPHTHALIC, ISOPHTHALIC,
AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE
Major Equipment 5-7

5.4 POLYPHTHALAMIDE FROM TEREPHTHALIC, ISOPHTHALIC,
AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE
Utilities Summary 5-9
TABLES (Continued)

5.5 POLYPHTHALAMIDE FROM TEREPTHALIC, ISOPHTHALIC, AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE Stream Flows 5-10

5.6 POLYPHTHALAMIDE Salt Formation Reactor Operating Conditions 5-11

5.7 POLYPHTHALAMIDE Salt Formation Reactor Design Conditions Comparison With Design Patents 5-12

5.8 POLYPHTHALAMIDE Prepolymerizer Design Conditions Comparison With Design Patent 5-13

5.9 POLYPHTHALAMIDE Polymerizer Design Conditions Comparison With Design Patent 5-14

5.10 Physical Properties of Glass-Filled Polyphthalamide 5-16

5.11 POLYPHTHALAMIDE Waste Streams 5-17

5.12 POLYPHTHALAMIDE FROM TEREPTHALIC, ISOPHTHALIC, AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE Total Capital Investment 5-20

5.13 POLYPHTHALAMIDE FROM TEREPTHALIC, ISOPHTHALIC, AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE Capital Investment By Section 5-21

5.14 POLYPHTHALAMIDE FROM TEREPTHALIC, ISOPHTHALIC, AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE, GLASS-FILLED Production Costs 5-22

5.15 POLYPHTHALAMIDE FROM TEREPTHALIC, ISOPHTHALIC, AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE, GLASS-FILLED Direct Costs By Section 5-24

5.16 POLYPHTHALAMIDE FROM TEREPTHALIC, ISOPHTHALIC, AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE, GLASS-FILLED Production Costs 5-25

5.17 POLYPHTHALAMIDE FROM TEREPTHALIC, ISOPHTHALIC, AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE, GLASS-FILLED Production Costs 5-27
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.18</td>
<td>POLYPHTHALAMIDE FROM TEREPHTHALIC, ISOPHTHALIC, AND ADIPIC ACIDS AND HEXAMETHYLENE DIAMINE, UNFILLED Production Costs</td>
</tr>
<tr>
<td>6.1</td>
<td>POLYETHYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL Patent Summary</td>
</tr>
<tr>
<td>6.2</td>
<td>POLYETHYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL Japanese Patent Summary</td>
</tr>
<tr>
<td>6.3</td>
<td>POLYETHYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL Research Disclosure Summary</td>
</tr>
<tr>
<td>6.4</td>
<td>POLYETHYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL Major Equipment</td>
</tr>
<tr>
<td>6.5</td>
<td>POLYETHYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL Utilities Summary</td>
</tr>
<tr>
<td>6.6</td>
<td>POLYETHYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL Stream Flows</td>
</tr>
<tr>
<td>6.7</td>
<td>POLYETHYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL Summary of Transesterification Reaction Conditions</td>
</tr>
<tr>
<td>6.8</td>
<td>POLYETHYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL Summary of Pre- and Final Polycondensation Reaction Conditions</td>
</tr>
<tr>
<td>6.9</td>
<td>POLYETHYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL Waste Streams</td>
</tr>
<tr>
<td>6.10</td>
<td>POLYETHYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL Total Capital Investment</td>
</tr>
<tr>
<td>6.11</td>
<td>POLYETHYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND ETHYLENE GLYCOL Production Costs</td>
</tr>
</tbody>
</table>
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.12</td>
<td>POLYBUTYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND 1,4-BUTANEDIOL Patent Summary</td>
</tr>
<tr>
<td>6.13</td>
<td>POLYBUTYLENE NAPHTHALATE FROM DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE AND 1,4-BUTANEDIOL Japanese Patent Summary</td>
</tr>
<tr>
<td>7.1</td>
<td>POLYESTER LIQUID CRYSTAL POLYMERS Patent Summary Polymer Manufacture</td>
</tr>
<tr>
<td>7.2</td>
<td>LIQUID CRYSTAL POLYMER FROM P-HYDROXYBENZOIC ACID, TEREPTHALIC ACID, AND 4,4i-DIHYDROXYDIPHENYL, NEAT Production Costs</td>
</tr>
<tr>
<td>7.3</td>
<td>LIQUID CRYSTAL POLYMER FROM P-HYDROXYBENZOIC ACID, TEREPTHALIC ACID, AND 4,4i-DIHYDROXYDIPHENYL, FILLED (GLASS FIBERS) Production Costs</td>
</tr>
<tr>
<td>7.4</td>
<td>4,4i-DIHYDROXYDIPHENYL FROM PHENOL Production Costs</td>
</tr>
<tr>
<td>7.5</td>
<td>P-HYDROXYBENZOIC ACID FROM PHENOL Production Costs</td>
</tr>
<tr>
<td>7.6</td>
<td>LIQUID CRYSTAL POLYMER FROM P-HYDROXYBENZOIC ACID AND 6-HYDROXY-2-NAPHTHOIC ACID, NEAT Production Costs</td>
</tr>
<tr>
<td>7.7</td>
<td>LIQUID CRYSTAL POLYMER FROM P-HYDROXYBENZOIC ACID AND 6-HYDROXY-2-NAPHTHOIC ACID, FILLED (GLASS FIBERS) Production Costs</td>
</tr>
<tr>
<td>7.8</td>
<td>6-HYDROXY-2-NAPHTHOIC ACID FROM BETA-NAPHTHOL Production Costs</td>
</tr>
</tbody>
</table>