Abstract

Process Economics Program Report No. 85B
ANTIOXIDANTS AND LIGHT STABILIZERS
(March 1993)

This report supplements our technical and economic appraisals of antioxidants and light stabilizers for the plastics industry that were previously carried out in Reports 85 and 85A. We examine some additional (and newer) high performance products that constitute a significant share of the market. These products include Irganox® 1076 (a Ciba-Geigy product) and Ethanox® 330 (a product of Ethyl Corporation) among the high molecular weight phenolic products, and Tinuvin® 144 (a Ciba-Geigy product) from the hindered amine light stabilizers group. For each product, we estimate and analyze the production costs and then compare them with the current selling prices.

We also present a brief survey of the industry status, with particular reference to the developed regions of the United States, Western Europe, and Japan. This survey includes a list of antioxidants/light stabilizers’ producers, consumption data for the principal product categories for 1985 to 1990, and projected consumption/growth rates to 1995.

Besides antioxidants/light stabilizers’ producers, this report will also be of interest to companies engaged in the compounding and formulation of thermoplastics (in particular, polyolefins) and others who fabricate these thermoplastics into finished articles.
CONTENTS (Concluded)

5 ETHANOx® 330 PRODUCTION 5-1
 TECHNICAL REVIEW 5-2
 Chemistry 5-2
 Process Review 5-4
 PROCESS DESCRIPTION 5-6
 Ether Intermediate Synthesis (Section 100) 5-6
 Ethanox 330 Synthesis (Section 200) 5-8
 Ethanox 330 Purification (Section 300) 5-8
 PROCESS DISCUSSION 5-16
 COST ESTIMATES 5-16

6 TINUVIN® 144 PRODUCTION 6-1
 CHEMISTRY AND TECHNICAL REVIEW 6-3
 PROCESS DESCRIPTION 6-6
 N-Alkylation (Section 100) 6-6
 C-Alkylation (Section 200) 6-8
 Transesterification (Section 300) 6-8
 Tinuvin 144 Synthesis (Section 400) 6-9
 PROCESS DISCUSSION 6-19
 COST ESTIMATES 6-20

APPENDIX A: PATENT SUMMARY TABLES A-1
APPENDIX B: DESIGN AND COST BASES B-1
APPENDIX C: CITED REFERENCES C-1
APPENDIX D: PATENT REFERENCES BY COMPANY D-1
APPENDIX E: PROCESS FLOW DIAGRAMS E-1
ILLUSTRATIONS

4.1 IRGANOXr 1076 PRODUCTION PROCESS FLOW DIAGRAM E-3
4.2 IRGANOX 1076 PRODUCTION PRODUCT VALUE AS A FUNCTION OF PLANT CAPACITY 4-34
5.1 ETHANOXr 330 PRODUCTION PROCESS FLOW DIAGRAM E-7
5.2 ETHANOX 330 PRODUCTION PRODUCT VALUE AS A FUNCTION OF PLANT CAPACITY 5-23
6.1 TINUVINr 144 PRODUCTION PROCESS FLOW DIAGRAM E-9
6.2 TINUVIN 144 PRODUCTION PRODUCT VALUE AS A FUNCTION OF PLANT CAPACITY 6-30
TABLES

2.1 SUMMARIZED PRODUCTION COSTS 2-5
3.1 MAIN CLASSES OF ANTIOXIDANTS & LIGHT STABILIZERS 3-5
3.2 U.S. PRODUCERS OF ANTIOXIDANTS FOR PLASTICS 3-6
3.3 WESTERN EUROPEAN PRODUCERS OF ANTIOXIDANTS FOR PLASTICS 3-7
3.4 JAPANESE PRODUCERS OF ANTIOXIDANTS FOR PLASTICS 3-8
3.5 U.S. PRODUCERS OF LIGHT ABSORBERS FOR PLASTICS 3-9
3.6 WESTERN EUROPEAN PRODUCERS OF LIGHT ABSORBERS FOR PLASTICS 3-10
3.7 JAPANESE PRODUCERS OF LIGHT ABSORBERS FOR PLASTICS 3-11
3.8 U.S. CONSUMPTION OF ANTIOXIDANTS AND LIGHT STABILIZERS IN THERMOPLASTICS 3-12
3.9 WESTERN EUROPE'S CONSUMPTION OF ANTIOXIDANTS AND LIGHT STABILIZERS IN THERMOPLASTICS 3-13
3.10 JAPAN'S CONSUMPTION OF ANTIOXIDANTS AND LIGHT STABILIZERS IN THERMOPLASTICS 3-14
4.1 A SELECTION OF CIBA-GEIGY HMW PHENOLIC ANTIOXIDANTS FOR POLYMERS 4-2
4.2 Irganox 1076 production patent summary A-3
4.3 Irganox 1076 production design bases 4-8
4.4 Irganox 1076 production major equipment 4-12
4.5 Irganox 1076 production stream flows 4-15
4.6 Irganox 1076 production utilities summary 4-23
4.7 Irganox 1076 production total capital investment 4-27
4.8 IRGANOX 1076 PRODUCTION CAPITAL INVESTMENT BY SECTION 4-28
4.9 IRGANOX 1076 PRODUCTION PRODUCTION COSTS 4-29
4.10 IRGANOX 1076 PRODUCTION DIRECT COSTS BY SECTION ($1,000) 4-31
4.11 2,6-DTBP BY THE ALKYLATION OF PHENOL PRODUCTION COSTS 4-32
5.1 ETHANOX 330 PRODUCTION PATENT SUMMARY A-7
5.2 ETHANOL 330 PRODUCTION DESIGN BASES 5-7
5.3 ETHANOX 330 PRODUCTION MAJOR EQUIPMENT 5-10
5.4 ETHANOX 330 PRODUCTION STREAM FLOWS 5-12
5.5 ETHANOX 330 PRODUCTION UTILITIES SUMMARY 5-15
5.6 ETHANOX 330 PRODUCTION TOTAL CAPITAL INVESTMENT 5-18
5.7 ETHANOX 330 PRODUCTION CAPITAL INVESTMENT BY SECTION 5-19
5.8 ETHANOX 330 PRODUCTION PRODUCTION COSTS 5-20
5.9 ETHANOX 330 PRODUCTION DIRECT COSTS BY SECTION ($1,000) 5-22
6.1 A SELECTION OF COMMERCIALLY SIGNIFICANT HALS PRODUCTS 6-2
6.2 TINUVIN 144 PRODUCTION PATENT SUMMARY A-10
6.3 TINUVIN 144 PRODUCTION DESIGN BASES 6-7
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>TINUVIN 144 PRODUCTION MAJOR EQUIPMENT</td>
<td>6-10</td>
</tr>
<tr>
<td>6.5</td>
<td>TINUVIN 144 PRODUCTION STREAM FLOWS</td>
<td>6-12</td>
</tr>
<tr>
<td>6.6</td>
<td>TINUVIN 144 PRODUCTION UTILITIES SUMMARY</td>
<td>6-18</td>
</tr>
<tr>
<td>6.7</td>
<td>TINUVIN 144 PRODUCTION TOTAL CAPITAL INVESTMENT</td>
<td>6-22</td>
</tr>
<tr>
<td>6.8</td>
<td>TINUVIN 144 PRODUCTION CAPITAL INVESTMENT BY SECTION</td>
<td>6-23</td>
</tr>
<tr>
<td>6.9</td>
<td>TINUVIN 144 PRODUCTION PRODUCTION COSTS</td>
<td>6-25</td>
</tr>
<tr>
<td>6.10</td>
<td>TINUVIN 144 PRODUCTION DIRECT COSTS BY SECTION ($1,000)</td>
<td>6-27</td>
</tr>
<tr>
<td>6.11</td>
<td>TMPO FROM ACETONE AND AMMONIA PRODUCTION COSTS</td>
<td>6-28</td>
</tr>
</tbody>
</table>