Abstract
Process Economics Program Report 43D
MEGA METHANOL PLANTS
(December 2003)

World scale, grass roots methanol plants currently have production capacities as high as 3,000 metric tons per day. A new round of announcements now suggests that technology for single train capacities as high as 15,000 metric tons per day may soon be commercialized.

The anticipated production cost savings from methanol plants this large is expected to allow methanol to compete as a primary fuel and in unconventional new petrochemical uses, in addition to its conventional uses as an intermediate commodity chemical used to produce end-use products such as MTBE, acetic acid, and formaldehyde.

Such mega methanol plants would be intended to be located in geographical areas where natural gas feedstock prices are comparatively low, such as the Middle East and Russia, or in remote locations containing large quantities of natural gas (Alaska, northwest Australia). The lack of infrastructure combined with long distance to market characteristic of these natural gas sources currently makes natural gas recovery as LNG non-economic. Easily transported methanol may off the most attractive alternative for exploiting large, but remote natural gas resources.

This PEP report examines current technology developments for mega methanol plants, presents a process design and corresponding production economics for an integrated, mega methanol plant with a 10,000 metric ton per day capacity, and compares the economic results with competing fuels such as LNG and long distance pipeline natural gas.
CONTENTS

1 INTRODUCTION .. 1-1
 CONVENTIONAL USES .. 1-1

2 SUMMARY ... 2-1
 SIZE OF PLANTS ... 2-1
 NON-CONVENTIONAL AND EMERGING USES ... 2-2
 GLOBAL DEMAND FOR METHANOL ... 2-2
 MAJOR METHANOL PRODUCERS .. 2-3
 METHANOL PRICES .. 2-4
 METHANOL MANUFACTURING PROCESS ... 2-5
 CAPITAL COST ESTIMATE .. 2-7
 MANUFACTURING COST ESTIMATE ... 2-7
 CONCLUSIONS .. 2-8

3 INDUSTRY STATUS .. 3-1
 INTRODUCTION ... 3-1
 GLOBAL ECONOMIC ENVIRONMENT ... 3-3
 Economic Growth in Industrial Countries ... 3-3
 Global Chemical Industry Environment .. 3-4
 Global Methanol Business Environment .. 3-4
 METHANOL TRADE PATTERNS .. 3-5
 METHANOL SUPPLY AND DEMAND SUMMARY .. 3-6
 GLOBAL DEMAND FOR METHANOL ... 3-8
 Formaldehyde ... 3-10
 Methyl Tertiary Butyl Ether (MTBE) .. 3-13
 Acetic Acid ... 3-17
 Other Conventional Uses of Methanol ... 3-19
CONTENTS (Continued)

Anticipated Demand Growth for Methanol ... 3-20
GLOBAL SUPPLY OF METHANOL... 3-21
Methanol Supply Trends... 3-22
Announced and Potential Methanol Plant Shut Downs.. 3-36
Incremental Expansions of Existing Methanol Capacity 3-37
Planned Methanol Projects... 3-38
METHANOL INDUSTRY CAPACITY UTILIZATION.. 3-41

4 FEEDSTOCK AVAILABILITY FOR MEGA METHANOL PLANTS............... 4-1
INTRODUCTION .. 4-1
WORLD NATURAL GAS PRODUCTION ... 4-1
Proven Reserves of Natural Gas.. 4-13

5 EMERGING MARKETS FOR METHANOL ... 5-1
PRODUCTION OF LIGHT OLEFINS ... 5-2
Methanol to Olefin Plants .. 5-3
 Process Development Background for Methanol to Olefins Plants 5-4
 Process Technology for Methanol to Olefins .. 5-5
 UOP/Norsk Hydro Methanol to Olefins Process Description 5-8
Methanol to Propylene by the Lurgi MTP Process.. 5-10
PRODUCING HIGHER ALCOHOLS FROM METHANOL 5-14
PRODUCING HYDROGEN FROM METHANOL .. 5-16
DIMETHYL ETHER FROM METHANOL .. 5-16
DIMETHYL CARBONATE FROM METHANOL .. 5-18
Process Description for Carbonylation of Methanol to Produce DMC 5-19
ENI DMC Process from Methanol .. 5-19
Texaco Process for Co-Production of DMC and EG ... 5-20
Ube Process for Vapor Phase Oxidative Carbonylation to Produce DMC 5-21
CONTENTS (Continued)

MEDIUM-SIZED GAS-TURBINE POWER PLANTS .. 5-21
OTHER INCIPIENT METHANOL MARKETS .. 5-22
Methanol to Gasoline ... 5-22
FUEL CELLS ... 5-22
 Residential Fuel Cells ... 5-24
 Transportation Fuel Cells .. 5-25
 Direct Methanol Fuel Cells .. 5-25
Fuel Applications .. 5-26

6 CHEMISTRY, EQUILIBRIUM AND KINETICS ... 6-1
STEAM METHANE REFORMING ... 6-1
OTHER SYNTHESIS GAS GENERATION CHEMICAL REACTIONS 6-1
CO₂ Dry Reforming ... 6-1
Partial Oxidation .. 6-2
Methane Cracking .. 6-2
Autothermal Reforming ... 6-2
Combined SMR/POX Reactor .. 6-3
IMPACT OF PROCESS CONDITIONS ... 6-4
Impact of Temperature on Syngas Generation Reaction 6-4
Impact of Pressure on Syngas Generation Reaction .. 6-5
Impact of Syngas Equilibrium on Syngas Generation Reaction 6-5
Impact of Feed Ratios on Syngas Generation Reaction .. 6-6
Oxygen Versus Air in Syngas Generation ... 6-7
TWO-STAGE SECONDARY NATURAL GAS REFORMING 6-7
METHANOL SYNTHESIS REACTION KINETICS .. 6-8

7 MEGA METHANOL PROCESS TECHNOLOGY ... 7-1
HISTORICAL PROCESS BACKGROUND ... 7-1
CONTENTS (Continued)

Primary Methanol Process Contractors... 7-2
Process Technology Alternatives... 7-3
Natural Gas Conversion Efficiency... 7-4
Plant Layout... 7-4
Materials of Construction... 7-5

GENERIC METHANOL PROCESS DESCRIPTION.. 7-6

Process Sections... 7-6

Air Separation.. 7-6
Process Steam Generation .. 7-8
Natural Gas Pre Treatment ... 7-9
Steam Methane Reforming ... 7-10
Partial Oxidation .. 7-11
Syngas Compression ... 7-11
Methanol Conversion... 7-11
Methanol Purification... 7-14
Hydrogen Supply ... 7-15
Catalyst Requirements.. 7-15

ICI/SYNETIX METHANOL PROCESSES... 7-15

Conventional ICI Low Pressure Methanol Process... 7-16
ICI/Synetix Gas Heated Reforming ... 7-16
Series and Parallel Configuration of SMR and POX Reformers 7-19

ICI Process Description... 7-19

Methanol Conversions... 7-19
Conventional ICI/Syntix Tube Cooled Converter ... 7-19
Methanol Casale ARC and Radial Converter.. 7-20
Linde Spiral Wound Isothermal Methanol Converter 7-22
Purge Gas Expander.. 7-23
Methanol Purification.. 7-23

Process Description--ICI/Synetix Mega Methanol.. 7-23
CONTENTS (Continued)

ICI/Synetix with Advanced Gas Heater Reformer .. 7-23
LURGI MEGA METHANOL PLANT DESIGN ... 7-36
Lurgi Syngas Generation Options .. 7-36
Pure Autothermal Reforming ... 7-36
Lurgi Combined Reforming Process ... 7-37
Lurgi Process Sections .. 7-37
 Lurgi Autothermal Reformer .. 7-37
 Lurgi Pre-reformer .. 7-38
 Lurgi Methanol Converter Options ... 7-39
 Lurgi One-Step Methanol Converter ... 7-39
 Lurgi 2-Step Methanol Converter ... 7-40
Hydrogen Purification .. 7-40
Energy Conservation .. 7-40
Process Description of Lurgi Combined Methanol Process .. 7-41
HALDOR TOPSOE (H-T) AUTOTHERMAL REFORMING PROCESS 7-56
Mega Methanol Processes .. 7-56
Two-Step Reforming Process ... 7-57
Autothermal Reforming ... 7-58
Process Description of Haldor Topsoe 2-Stage Methanol Production Process 7-59
OTHER MEGA METHANOL COMMERCIAL PROCESSES 7-73
Toyo Engineering MRF-Z Converter Methanol Process ... 7-73
StarChem - Foster Wheeler Methanol Process ... 7-73
Eastman - Air Products Liquid Phase Methanol Process ... 7-75

8 PROCESS ECONOMICS FOR A MEGA METHANOL PLANT 8-1
 INTRODUCTION ... 8-1
 MEGA METHANOL CAPITAL INVESTMENT COST .. 8-1
 LICENSOR CAPITAL COST ESTIMATES ... 8-6
CONTENTS (Concluded)

SENSITIVITY OF CAPITAL COST TO PRODUCTION CAPACITY 8-7
OTHER FRONT END COSTS FOR METHANOL PLANTS 8-7
PRODUCTION COST ESTIMATES .. 8-8
COMPARISON WITH ACTUAL METHANOL PRICES 8-11
SENSITIVITY TO NATURAL GAS FUEL COST ... 8-11
TRANSPORTATION COSTS .. 8-12
CONCLUSIONS .. 8-14

APPENDIX A: PATENT SUMMARY TABLES .. A-1
APPENDIX B: DESIGN AND COST BASES ... B-1
APPENDIX C: CITED REFERENCES .. C-1
APPENDIX D: PATENT REFERENCES BY COMPANY D-1
APPENDIX E: PROCESS FLOW DIAGRAM .. E-1
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>U.S. Spot Prices for Methanol 1984-2001</td>
<td>2-5</td>
</tr>
<tr>
<td>2.2</td>
<td>Basic Methanol Production Process</td>
<td>2-6</td>
</tr>
<tr>
<td>2.3</td>
<td>Mega Methanol Total Fixed Capital Cost</td>
<td>2-7</td>
</tr>
<tr>
<td>2.4</td>
<td>Estimated Unit Manufacturing Cost</td>
<td>2-7</td>
</tr>
<tr>
<td>3.1</td>
<td>Regional Distribution of Methanol Demand</td>
<td>3-8</td>
</tr>
<tr>
<td>3.2</td>
<td>Ranking of End Use Demand for Methanol</td>
<td>3-10</td>
</tr>
<tr>
<td>3.3</td>
<td>Global Distribution of Methanol Supply by Region</td>
<td>3-21</td>
</tr>
<tr>
<td>3.4</td>
<td>Regional Distribution of Excess Methanol Supply</td>
<td>3-22</td>
</tr>
<tr>
<td>4.1</td>
<td>Regional Production of Natural Gas</td>
<td>4-1</td>
</tr>
<tr>
<td>5.1</td>
<td>Process Scheme for Nigerian Methanol to Olefins Project</td>
<td>5-3</td>
</tr>
<tr>
<td>5.2</td>
<td>Higher Alcohols Via Methanol Carbonylation</td>
<td>5-15</td>
</tr>
<tr>
<td>7.1</td>
<td>Process Schematic for Cryogenic Oxygen Plant</td>
<td>7-7</td>
</tr>
<tr>
<td>7.2</td>
<td>Design of Quench Type Methanol Converter</td>
<td>7-12</td>
</tr>
<tr>
<td>7.3</td>
<td>Design of Shell and Tube Methanol Converter</td>
<td>7-13</td>
</tr>
<tr>
<td>7.4</td>
<td>Schematic Drawing of ICI/Synetix Gas Heated Reactor</td>
<td>7-17</td>
</tr>
<tr>
<td>7.5</td>
<td>Schematic Drawing of ICI/Synetix Advanced Gas Heated Reactor</td>
<td>7-18</td>
</tr>
<tr>
<td>7.6</td>
<td>Methanol Casale ARC Methanol Converter</td>
<td>7-20</td>
</tr>
<tr>
<td>7.7</td>
<td>Methanol Casale Radial Converter Design</td>
<td>7-21</td>
</tr>
<tr>
<td>7.8</td>
<td>Linde Isothermal Methanol Converter</td>
<td>7-22</td>
</tr>
<tr>
<td>7.9</td>
<td>ICI Mega Methanol Process</td>
<td>D-3</td>
</tr>
<tr>
<td>7.10</td>
<td>Schematic of Lurgi Autothermal Reformer</td>
<td>7-38</td>
</tr>
<tr>
<td>7.11</td>
<td>Schematic of Lurgi One-Step Methanol Conversion Reactor</td>
<td>7-39</td>
</tr>
<tr>
<td>7.12</td>
<td>Lurgi Mega Methanol Process</td>
<td>D-7</td>
</tr>
<tr>
<td>7.13</td>
<td>Haldor Topsoe Mega Methanol Process</td>
<td>D-11</td>
</tr>
<tr>
<td>7.14</td>
<td>Schematic of Haldor Topsoe Autothermal Reformer</td>
<td>7-58</td>
</tr>
<tr>
<td>8.1</td>
<td>Historic Methanol Prices</td>
<td>8-11</td>
</tr>
</tbody>
</table>
TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mega Methanol Plant Comparison with Oil Refineries</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2</td>
<td>Potential Fuel and Feedstock Applications for Methanol</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3</td>
<td>Global Demand for Methanol by End-Use</td>
<td>2-3</td>
</tr>
<tr>
<td>2.4</td>
<td>Major Methanol Global Producers</td>
<td>2-4</td>
</tr>
<tr>
<td>2.5</td>
<td>Primary Methanol Formation Reactions</td>
<td>2-6</td>
</tr>
<tr>
<td>3.1</td>
<td>SRIC Methanol Multiclient Publications</td>
<td>3-2</td>
</tr>
<tr>
<td>3.2</td>
<td>World Methanol Capacity, Production and Consumption by Region</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3</td>
<td>World Methanol Consumption by End Use</td>
<td>3-9</td>
</tr>
<tr>
<td>3.4</td>
<td>Minor Chemical Derivatives of Methanol</td>
<td>3-9</td>
</tr>
<tr>
<td>3.5</td>
<td>Historical and Projected World Formaldehyde Capacity, Production and Consumption by Region</td>
<td>3-12</td>
</tr>
<tr>
<td>3.6</td>
<td>Historical and Projected World MTBE Capacity, Production and Consumption by Region</td>
<td>3-15</td>
</tr>
<tr>
<td>3.7</td>
<td>Historical and Projected World Acetic Acid Capacity, Production and Consumption by Region</td>
<td>3-18</td>
</tr>
<tr>
<td>3.8</td>
<td>Global Demand for Methanol by End-Use</td>
<td>3-20</td>
</tr>
<tr>
<td>3.9</td>
<td>Major Global Producers of Methanol (2000 Data)</td>
<td>3-23</td>
</tr>
<tr>
<td>3.10</td>
<td>Global Methanol Producers</td>
<td>3-24</td>
</tr>
<tr>
<td>3.11</td>
<td>Proposed Methanol Plants (43D009)</td>
<td>3-34</td>
</tr>
<tr>
<td>3.12</td>
<td>Announced Methanol Plants</td>
<td>3-35</td>
</tr>
<tr>
<td>3.13</td>
<td>Methanol Projects Most Likely to be Built</td>
<td>3-35</td>
</tr>
<tr>
<td>3.14</td>
<td>Incremental Methanol Capacity Expansions</td>
<td>3-38</td>
</tr>
<tr>
<td>4.1</td>
<td>World Natural Gas Production, 2000</td>
<td>4-2</td>
</tr>
<tr>
<td>4.2</td>
<td>Global Demand for Natural Gas, 2000</td>
<td>4-7</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of Oil and Gas Reserves</td>
<td>4-12</td>
</tr>
<tr>
<td>4.4</td>
<td>USGS Assessment of Oil and Gas Resources</td>
<td>4-12</td>
</tr>
<tr>
<td>4.5</td>
<td>Distribution of Natural Gas Proven Reserves</td>
<td>4-13</td>
</tr>
<tr>
<td>4.6</td>
<td>Countries with Large Natural Gas Proven Reserves</td>
<td>4-14</td>
</tr>
<tr>
<td>5.1</td>
<td>Potential Fuel and Feedstock End Uses for Methanol</td>
<td>5-1</td>
</tr>
</tbody>
</table>
TABLES (Continued)

5.2 Product Distribution of Lurgi MTP Process ... 5-11
5.3 SRIC Economic Conclusions on the ENI DMC Process .. 5-20
6.1 Syngas Composition Results from Pilot Plant Studies Conducted by Synthroleum ... 6-3
6.2 Comparison of Process Technologies for Syngas Generation Used in GTL Processing .. 6-4
6.3 Elementary Steps in a Kinetic Model of Methanol Synthesis 6-9
7.1 Market Share of Methanol Process Licensors .. 7-3
7.2 Natural Gas Stream Requiring A Pre-Reformer ... 7-10
7.3 ICI/Synetix Mega Methanol Process Design Bases and Assumptions 7-26
7.4 ICI/Synetix Mega Methanol Process Stream Flows ... 7-27
7.5 ICI/Synetix Mega Methanol Process Major Equipment .. 7-34
7.6 Methanol from Natural Gas by The Lurgi Two-Stage Combined Reforming Process Design Bases and Assumptions 7-44
7.7 Lurgi Mega Methanol Process Stream Flows .. 7-46
7.8 Methanol from Natural Gas by The Lurgi Two-Stage Combined Reforming Process Major Equipment .. 7-53
7.9 Status of Haldor Topsoe Mega Methanol Technology ... 7-57
7.10 Methanol from Natural Gas by the Haldor-Topsoe Two-Stage Reforming Process Design Bases and Assumptions 7-61
7.11 Haldor-Topsoe Mega Methanol Process Stream Flows 7-63
7.12 Methanol from Natural Gas by The Haldor Topsoe Mega Methanol Process Major Equipment ... 7-70
8.1 Construction Cost Site Location Factors .. 8-2
8.2 Capital Cost Estimate for 10,000 MT/D Mega Methanol Plant 8-2
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>ICI/Synetix Mega Methanol Plant</td>
<td>8-3</td>
</tr>
<tr>
<td></td>
<td>Total Capital Investment</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>Lurgi Mega Methanol Plant</td>
<td>8-4</td>
</tr>
<tr>
<td></td>
<td>Total Capital Investment</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Haldor Topsoe Mega Methanol Plant</td>
<td>8-5</td>
</tr>
<tr>
<td></td>
<td>Total Capital Investment</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>Licensor Capital Cost Estimates for Mega Methanol Plants</td>
<td>8-6</td>
</tr>
<tr>
<td>8.7</td>
<td>Comparison of Mega Methanol with Conventional Oil Refinery</td>
<td>8-6</td>
</tr>
<tr>
<td>8.8</td>
<td>Capital Cost Estimate for Mega Methanol Plants</td>
<td>8-7</td>
</tr>
<tr>
<td>8.9</td>
<td>Mega Methanol Unit Production Cost</td>
<td>8-9</td>
</tr>
<tr>
<td></td>
<td>Production Costs</td>
<td></td>
</tr>
<tr>
<td>8.10</td>
<td>10,000 MT/D Mega Methanol Plant Unit Production Cost</td>
<td>8-10</td>
</tr>
<tr>
<td></td>
<td>Production Costs</td>
<td></td>
</tr>
<tr>
<td>8.11</td>
<td>Prevailing Stranded Natural Gas Costs</td>
<td>8-12</td>
</tr>
<tr>
<td>8.12</td>
<td>Comparison of Mega Methanol and Conventional Methanol Plant Economics</td>
<td>8-13</td>
</tr>
<tr>
<td>8.13</td>
<td>Typical Costs for LNG Production</td>
<td>8-14</td>
</tr>
<tr>
<td>A.1</td>
<td>Mega Methanol Patents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patent Summary</td>
<td>A-2</td>
</tr>
<tr>
<td>D.1</td>
<td>Construction Cost Site Location Factors</td>
<td>B-3</td>
</tr>
</tbody>
</table>