Abstract
Process Economics Program Report 39C
SYNDIOTACTIC POLYSTYRENE
(August 1994)

As of early-1994, syndiotactic polystyrene (sPS) has been produced only in pre-commercial quantities. Start-up of a commercial plant is expected in 1994-1995.

This report reviews the technology for syndiotactic polystyrene production and examines the process economics of a conceptual fluidized bed reactor process, a conceptual self-cleaning reactor process, and a conceptual stirred-tank reactor process. The study also reports the industry status of syndiotactic polystyrene, including properties of some pre-commercial products.

This report is useful not only to present and future polystyrene producers but also to present and future producers of engineering thermoplastics. Properly formulated sPS can compete in certain engineering thermoplastics applications.
CONTENTS

1 INTRODUCTION 1-1

2 SUMMARY 2-1

INDUSTRIAL ASPECTS 2-1
 Product Properties 2-1
 Potential Markets 2-2

TECHNICAL ASPECTS 2-2
 Literature Review 2-2
 Transition Metal-Containing Catalysts with Cyclopentadienyl Ligands (Metalloocene Catalysts) 2-2
 Transitional Metal-Containing Catalysts with Non-Cyclopentadienyl Ligands 2-3
 Chemistry 2-5
 Molecular Configuration/Polymorphism 2-7
 Patent Review 2-8
 Idemitsu Kosan (Including Idemitsu Petrochemical) 2-8
 Dow 2-9
 Asahi Chemical 2-9
 Montecatini (Including Himont and Montecatini Technologie) 2-9
 Sumitomo Chemical 2-9
 Fina Technology 2-9
 Tosoh 2-9
 Dow and Idemitsu Kosan 2-9
 Mitsubishi Petrochemical 2-10
 Mitsui Toatsu Chemicals 2-10
 Soga, K. et al. 2-10
 Tonen 2-10

PROCESS ECONOMICS 2-10
 A Continuous Fluidized Bed Reactor Process 2-10
 A Continuous Self-Cleaning Reactor Process 2-11
 A Continuous Stirred-Tank Reactor Process 2-12
 Cost Comparison of the Three Conceptual sPS Processes 2-12
CONTENTS (Continued)

3 INDUSTRY STATUS
INTRODUCTION 3-1
EXPECTED PRODUCERS 3-1
PRODUCT PROPERTIES 3-1
POTENTIAL MARKETS 3-9
PRICE 3-10

4 TECHNOLOGY REVIEW
LITERATURE REVIEW 4-1
Transition Metal-Containing Catalysts
Cyclopentadienyl Ligands (Metallocene Catalysts) 4-1
CpTiCl₃ and Cp*TiCl₃ 4-3
Al₂O₃-Supported Cp*TiCl₃ 4-4
Cyclopentadienyltitanium Tributoxide 4-4
Bis(η-Cyclopentadienyl)titanium Derivatives 4-4

Transition Metal-Containing Catalysts with Non-Cyclopentadienyl Ligands
Titanium Tetrabutoxide 4-5
Titanium Ethoxide Derivatives 4-6
Titanium Tetramenthoxide 4-7
Tetrabenzyltitanium and Tetrabenzylzirconium 4-7
Titanium Trichloride 4-8
Hydrated Titanium and Zirconium Compounds 4-8
Titanium-Borate Compounds 4-9
Methylaluminoxane 4-9
Chemistry 4-9
Molecular Configuration/Polymorphy 4-15

PATENT REVIEW 4-17
Idemitsu Kosan (Including Idemitsu Petrochemical) 4-18
Dow 4-24
Asahi Chemical 4-25
Montecatini (Including Himont and Montecatini Tecnologie) 4-26
Sumitomo Chemical 4-27
Fina Technology 4-27
CONTENTS (Continued)

4 TECHNOLOGY REVIEW (Concluded)

PATENT REVIEW (Concluded)
 Tosoh 4-27
 Dow and Idemitsu Kosan 4-28
 Mitsubishi Petrochemical 4-28
 Mitsui Toatsu Chemicals 4-28
 Soga, K. et al. 4-28
 Tonen 4-29

5 SYNDIOTACTIC POLYSTYRENE BY A CONTINUOUS FLUIDIZED BED REACTOR PROCESS 5-1

PROCESS DESCRIPTION 5-1
 Polymerization 5-1
 Product Purification and Finishing 5-3

PROCESS DISCUSSION 5-8
COST ESTIMATES 5-9

6 SYNDIOTACTIC POLYSTYRENE BY A CONTINUOUS SELF-CLEANING REACTOR PROCESS 6-1

PROCESS DESCRIPTION 6-1
 Polymerization 6-1
 Product Purification and Finishing 6-3

PROCESS DISCUSSION 6-8
COST ESTIMATES 6-9

7 SYNDIOTACTIC POLYSTYRENE BY A CONTINUOUS STIRRED-TANK REACTOR PROCESS 7-1

PROCESS DESCRIPTION 7-1
 Polymerization 7-1
 Product Purification and Finishing 7-3

PROCESS DISCUSSION 7-8
COST ESTIMATES 7-9
CONTENTS (Concluded)

8 COST COMPARISON OF THE THREE CONCEPTUAL SYNDIOTACTIC POLYSTYRENE PROCESSES 8-1
APPENDIX A: PATENT SUMMARY TABLES A-1
APPENDIX B: DESIGN AND COST BASES B-1
APPENDIX C: CITED REFERENCES C-1
APPENDIX D: PATENT REFERENCES BY COMPANY D-1
APPENDIX E: PROCESS FLOW DIAGRAMS E-1
ILLUSTRATIONS

3.1 Effect of Temperature on Crystallization Half-Time of Syndiotactic Polystyrene 3-3

3.2 Specific Gravity of Selected Glass Fiber (30%) Reinforced Engineering Plastics 3-7

3.3 Impact Strength and Heat Distortion Temperature of Selected Glass Fiber (30%) Reinforced Engineering Plastics 3-7

3.4 Hydrolytic Resistance of Selected Glass Fiber (30%) Reinforced Engineering Plastics 3-8

3.5 Moisture Resistance of Selected Glass Fiber (30%) Reinforced Engineering Plastics 3-8

3.6 Dielectric Constant of Selected Glass Fiber (30%) Reinforced Engineering Plastics 3-9

5.1 Syndiotactic Polystyrene by a Continuous Fluidized Bed Reactor Process Process Flow Diagram E-3

5.2 Syndiotactic Polystyrene by a Continuous Fluidized Bed Reactor Process Effect of Capital-Related Costs on Product Value 5-17

5.3 Syndiotactic Polystyrene by a Continuous Fluidized Bed Reactor Process Effect of Styrene Price on Product Value 5-18

5.4 Syndiotactic Polystyrene by a Continuous Fluidized Bed Reactor Process Effect of Cp*Ti(OMe)$_3$ and MAO Price and Consumption on Product Value 5-19

6.2 Syndiotactic Polystyrene by a Continuous Self-Cleaning Reactor Process Effect of Capital-Related Costs on Product Value 6-17

6.3 Syndiotactic Polystyrene by a Continuous Self-Cleaning Reactor Process Effect of Styrene Price on Product Value 6-18

6.4 Syndiotactic Polystyrene by a Continuous Self-Cleaning Reactor Process Effect of Cp*Ti(OMe)$_3$ and MAO Price and Consumption on Product Value 6-19

7.1 Syndiotactic Polystyrene by a Continuous Stirred-Tank Reactor Process Process Flow Diagram E-7
<table>
<thead>
<tr>
<th>Illustration ID</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Syndiotactic Polystyrene by a Continuous Stirred-Tank Reactor Process</td>
<td>7-17</td>
</tr>
<tr>
<td></td>
<td>Effect of Capital-Related Costs on Product Value</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Syndiotactic Polystyrene by a Continuous Stirred-Tank Reactor Process</td>
<td>7-18</td>
</tr>
<tr>
<td></td>
<td>Effect of Styrene Price on Product Value</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Syndiotactic Polystyrene by a Continuous Stirred-Tank Reactor Process</td>
<td>7-19</td>
</tr>
<tr>
<td></td>
<td>Effect of Cp*Ti(OMe)₃ and MAO Price and Consumption on Product Value</td>
<td></td>
</tr>
</tbody>
</table>
TABLES

2.1 Syndiotactic Polystyrene Production Cost Summary 2-11
3.1 Properties of Selected Syndiotactic Polystyrene Products 3-2
3.2 Glass Transition Point and Melting Point of Selected Syndiotactic Styrenic Polymers 3-5
3.3 Properties of Selected Glass Fiber-Reinforced PBT, PET, Nylon 66, PPS, and Syndiotactic Polystyrene (sPS) 3-6
4.1 Syndiotactic Polystyrene (sPS) Polymer Preparation Patent Summary A-3
4.2 Syndiotactic Polystyrene (sPS) Product Treatment and Application Patent Summary A-54
5.1 Syndiotactic Polystyrene by a Continuous Fluidized Bed Reactor Process Design Bases and Assumptions 5-2
5.2 Syndiotactic Polystyrene by a Continuous Fluidized Bed Reactor Process Stream Flows 5-4
5.3 Syndiotactic Polystyrene by a Continuous Fluidized Bed Reactor Process Major Equipment 5-5
5.4 Syndiotactic Polystyrene by a Continuous Fluidized Bed Reactor Process Utilities Summary 5-7
5.5 Syndiotactic Polystyrene by a Continuous Fluidized Bed Reactor Process Total Capital Investment 5-12
5.6 Syndiotactic Polystyrene by a Continuous Fluidized Bed Reactor Process Capital Investment by Section 5-13
5.7 Syndiotactic Polystyrene by a Continuous Fluidized Bed Reactor Process Production Costs 5-14
5.8 Syndiotactic Polystyrene by a Continuous Fluidized Bed Reactor Process Direct Costs by Section 5-16
6.1 Syndiotactic Polystyrene by a Continuous Self-Cleaning Reactor Process Design Bases and Assumptions 6-2
6.2 Syndiotactic Polystyrene by a Continuous Self-Cleaning Reactor Process Stream Flows 6-4
TABLES (Concluded)

6.3 Syndiotactic Polystyrene by a Continuous Self-Cleaning Reactor Process Major Equipment 6-5
6.4 Syndiotactic Polystyrene by a Continuous Self-Cleaning Reactor Process Utilities Summary 6-7
6.5 Syndiotactic Polystyrene by a Continuous Self-Cleaning Reactor Process Total Capital Investment 6-12
6.6 Syndiotactic Polystyrene by a Continuous Self-Cleaning Reactor Process Capital Investment by Section 6-13
6.7 Syndiotactic Polystyrene by a Continuous Self-Cleaning Reactor Process Production Costs 6-14
6.8 Syndiotactic Polystyrene by a Continuous Self-Cleaning Reactor Process Direct Costs by Section 6-16
7.1 Syndiotactic Polystyrene by a Continuous Stirred-Tank Reactor Process Design Bases and Assumptions 7-2
7.2 Syndiotactic Polystyrene by a Continuous Stirred-Tank Reactor Process Stream Flows 7-4
7.3 Syndiotactic Polystyrene by a Continuous Stirred-Tank Reactor Process Major Equipment 7-5
7.4 Syndiotactic Polystyrene by a Continuous Stirred-Tank Reactor Process Utilities Summary 7-7
7.5 Syndiotactic Polystyrene by a Continuous Stirred-Tank Reactor Process Total Capital Investment 7-12
7.6 Syndiotactic Polystyrene by a Continuous Stirred-Tank Reactor Process Capital Investment by Section 7-13
7.7 Syndiotactic Polystyrene by a Continuous Stirred-Tank Reactor Process Production Costs 7-14
7.8 Syndiotactic Polystyrene by a Continuous Stirred-Tank Reactor Process Direct Costs by Section 7-16
8.1 Syndiotactic Polystyrene Production Cost Summary 8-3