Abstract
Process Economics Program Report 35D
BUTADIENE AS A CHEMICAL RAW MATERIAL
(September 1998)

The dominant technology for producing butadiene (BD) is the cracking of naphtha to produce ethylene. BD is obtained as a coproduct. As the growth of ethylene production outpaced the growth of BD demand, an oversupply of BD has been created. This situation provides the incentive for developing technologies with BD as the starting material. The objective of this report is to evaluate the economics of BD-based routes and to compare the economics with those of currently commercial technologies. In addition, this report addresses commercial aspects of the butadiene industry such as supply/demand, BD surplus, price projections, pricing history, and BD value in nonchemical applications.

We present process economics for two technologies:
- Cyclodimerization of BD leading to ethylbenzene (DSM-Chiyoda)
- Hydrocyanation of BD leading to caprolactam (BASF).

Furthermore, we present updated economics for technologies evaluated earlier by PEP:
- Cyclodimerization of BD leading to styrene (Dow)
- Carboalkoxylation of BD leading to caprolactam and to adipic acid
- Hydrocyanation of BD leading to hexamethylenediamine.

We also present a comparison of the DSM-Chiyoda and Dow technologies for producing styrene. The Dow technology produces styrene directly and is limited in terms of capacity by the BD available from a world-scale naphtha cracker. The 250 million lb/yr (113,000 t/yr) capacity selected for the Dow technology requires the BD output of two world-scale naphtha crackers. The DSM-Chiyoda technology produces ethylbenzene. In our evaluations, we assumed a scheme whereby ethylbenzene from a 266 million lb/yr (121,000 t/yr) DSM-Chiyoda unit is combined with 798 million lb/yr (362,000 t/yr) of ethylbenzene produced by conventional alkylation of benzene with ethylene. The combined ethylbenzene stream is then dehydrogenated to styrene in a Fina/Badger unit of 1,000 million lb/yr (454,000 t/yr) capacity.
GLOSSARY

<table>
<thead>
<tr>
<th>Symbol or Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Acrylonitrile-butadiene-styrene</td>
</tr>
<tr>
<td>ACN</td>
<td>6-Aminocapronitrile</td>
</tr>
<tr>
<td>ADA</td>
<td>Adipic acid</td>
</tr>
<tr>
<td>ADN</td>
<td>Adiponitrile</td>
</tr>
<tr>
<td>BD</td>
<td>Butadiene</td>
</tr>
<tr>
<td>BDO</td>
<td>Butanediol</td>
</tr>
<tr>
<td>BLI</td>
<td>Battery limits</td>
</tr>
<tr>
<td>CAPM</td>
<td>Caprolactam</td>
</tr>
<tr>
<td>COD</td>
<td>1,5-Cyclooctadiene</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethyl formamide</td>
</tr>
<tr>
<td>DMN</td>
<td>Dimethyl naphthalene</td>
</tr>
<tr>
<td>DMT</td>
<td>Dimethyl terephthalate</td>
</tr>
<tr>
<td>EB</td>
<td>Ethylbenzene</td>
</tr>
<tr>
<td>ECH</td>
<td>Ethylcyclohexane</td>
</tr>
<tr>
<td>EPB</td>
<td>3,4-Epoxy-1-butene</td>
</tr>
<tr>
<td>HCN</td>
<td>Hydrocyanic acid</td>
</tr>
<tr>
<td>HMDA</td>
<td>Hexamethylenediamine</td>
</tr>
<tr>
<td>HMI</td>
<td>Hexamethyleneimine</td>
</tr>
<tr>
<td>2M2BN</td>
<td>2-Methyl-2-butenenitrile</td>
</tr>
<tr>
<td>2M3BN</td>
<td>2-Methyl-3-butenenitrile</td>
</tr>
<tr>
<td>M2P</td>
<td>Methyl-2-pentenoate</td>
</tr>
<tr>
<td>M3P</td>
<td>Methyl-3-pentenoate</td>
</tr>
<tr>
<td>M4P</td>
<td>Methyl-4-pentenoate</td>
</tr>
<tr>
<td>M5FV</td>
<td>Methyl 5-formylvalerate</td>
</tr>
<tr>
<td>M6AC</td>
<td>Methyl 6-aminocaproate</td>
</tr>
<tr>
<td>MBN</td>
<td>Methyl butenenitrile</td>
</tr>
<tr>
<td>NDA</td>
<td>Naphthalenedicarboxylic acid</td>
</tr>
</tbody>
</table>
GLOSSARY (Concluded)

<table>
<thead>
<tr>
<th>Symbol or Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBR</td>
<td>Polybutadiene rubber</td>
</tr>
<tr>
<td>PEN</td>
<td>Polyethylene naphthalate</td>
</tr>
<tr>
<td>PN</td>
<td>Pentenenitrile</td>
</tr>
<tr>
<td>Ra-Co</td>
<td>Raney cobalt</td>
</tr>
<tr>
<td>Ra-Ni</td>
<td>Raney nickel</td>
</tr>
<tr>
<td>ROI</td>
<td>Return on investment</td>
</tr>
<tr>
<td>SB</td>
<td>Styrene-butadiene</td>
</tr>
<tr>
<td>SBR</td>
<td>Styrene-butadiene rubber</td>
</tr>
<tr>
<td>TFC</td>
<td>Total fixed capital</td>
</tr>
<tr>
<td>THA</td>
<td>Tetrahydroazepine</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TPB</td>
<td>Triphenylborane</td>
</tr>
<tr>
<td>VCH</td>
<td>Vinylcyclohexene</td>
</tr>
</tbody>
</table>
5 BUTADIENE VALUES AND FUTURE PRICES .. 5-1
 BUTADIENE VALUES ... 5-1
 FUTURE BUTADIENE PRICES IN THE UNITED STATES............................. 5-6
 Option 1: Ethylene-Based Price Projections ... 5-6
 Option 2: Value-Based Price Projections .. 5-8

6 CHEMISTRY ... 6-1
 CYCLODIMERIZATION OF BUTADIENE TO ETHYLBENZENE OR STYRENE... 6-1
 ACETOXYLATION OF BUTADIENE TO BUTANEDIOL AND
 TETRAHYDROFURAN .. 6-3
 HYDROCYANATION OF BUTADIENE TO CAPROLACTAM AND/OR
 HEXAMETHYLENEDIAMINE .. 6-4
 Hydrocyanation to Pentene- and Butenenitriles 6-4
 Hydrocyanation of 4-Pentenenitrile to Adiponitrile 6-5
 Hydrogenation of Adiponitrile to HMDA .. 6-6
 Partial Hydrogenation of Adiponitrile to HMDA and 6-Aminocapronitrile... 6-6
 Cyclization of 6-Aminocapronitrile to Caprolactam 6-6
 CARBOALKOXYLATION OF BUTADIENE TO EITHER CAPROLACTAM
 OR ADIPIC ACID .. 6-7
 Carboalkoxylation of Butadiene ... 6-7
 Isomerization of Methyl 3-Pentenoate ... 6-8
 Carboalkoxylation of Methyl 3-Pentenoate .. 6-8
 Hydrolysis of Dimethyl Adipate to Adipic Acid 6-8
 Hydroformylation of Methyl 4-Pentenoate to Formylvalerate 6-9
 Reductive Amination of M5FV to Methyl 6-Aminocaproate 6-9
 Cyclization of Methyl 6-Aminocaproate to Caprolactam 6-9
 ALKENYLATION OF o-XYLENE WITH BUTADIENE LEADING TO
 DIMETHYL NAPHTHALENE .. 6-9
CONTENTS (Continued)

7 STYRENE FROM BUTADIENE .. 7-1

PROCESS REVIEW .. 7-1

Cyclodimerization of 1,3-Butadiene ... 7-2
DSM-Chiyoda Butadiene Dimerization Process ... 7-2
Dow Chemical Butadiene Dimerization Process ... 7-3

Dehydrogenation of 4-Vinylcyclohexene to Ethylbenzene 7-3
Oxidative Dehydrogenation of 4-Vinylcyclohexene to Ethylbenzene 7-5

PROCESS DESCRIPTION ... 7-5

BD Dimerization (Section 100) ... 7-8
VCH Dehydrogenation (Section 200) .. 7-8

PROCESS DISCUSSION ... 7-15

Design Basis ... 7-15

BD Dimerization (Section 100) .. 7-15
VCH Dehydrogenation (Section 200) .. 7-16

Materials of Construction ... 7-16

Waste Streams ... 7-18

COST ESTIMATES ... 7-19

COMPARISON OF STYRENE ECONOMICS ... 7-19

8 CAPROLACTAM BY HYDROCYANATION OF BUTADIENE 8-1

PROCESS REVIEW ... 8-1

Selective Partial Hydrogenation of Adiponitrile ... 8-2
Raney Nickel and Raney Cobalt Catalysts ... 8-2
Ruthenium Complex Catalysts ... 8-3
BASF Gas-Phase Processes .. 8-3
BASF Liquid-Phase Processes .. 8-4
Recovery of ACN, HMDA, and ADN ... 8-4
CONTENTS (Continued)

PROCESS REVIEW (Concluded)
- Cyclization of ACN... 8-4
- Purification of Caprolactam.. 8-5

PROCESS DESCRIPTION... 8-5
- ACN Production (Section 100)... 8-9
- Caprolactam Production (Section 200)................................. 8-9

PROCESS DISCUSSION.. 8-22
- Design Basis.. 8-22
- ACN Production (Section 100)... 8-22
- Caprolactam Production (Section 200)................................. 8-22
- Waste Streams... 8-22

COST ESTIMATES... 8-24

COMPARISON OF CAPROLACTAM ECONOMICS......................... 8-25

CAPROLACTAM BY CARBOALKOXYLATION OF BUTADIENE........... 9-1

PROCESS REVIEW.. 9-1
- Carboalkoxylation and Isomerization................................. 9-1
- Hydroformylation... 9-2
- Reductive Amination and Cyclization................................. 9-2

PROCESS DESCRIPTION... 9-3
- Carboalkoxylation (Section 100)... 9-7
- Isomerization and Hydroformylation (Section 200)............. 9-7
- Reductive Amination (Section 300)................................. 9-8
- Cyclization (Section 400)... 9-8

PROCESS ECONOMICS... 9-8
CONTENTS (Concluded)

10 HEXAMETHYLENEDIAMINE FROM BUTADIENE VIA ADIPONITRILE BY HYDROCYANATION..10-1

 PROCESS DESCRIPTION...10-1

 Butadiene Hydrocyanation to Pentenenitrile (Section 100)..................................10-1
 2M3BN Isomerization to Pentenenitrile (Section 200)..10-1
 Pentenenitrile Hydrocyanation to Adiponitrile (Section 300).................................10-3
 Adiponitrile Purification (Section 400)...10-4
 Catalyst Regeneration (Section 500)...10-4
 Adiponitrile Hydrogenation (Section 600)...10-4

 PROCESS ECONOMICS...10-5

11 ADIPIC ACID FROM BUTADIENE BY CARBOALKOXYLATION..........................11-1

 PROCESS DESCRIPTION...11-1

 Catalyst Reduction (Section 100)..11-1
 Carboalkoxylation (Section 200)...11-1
 Catalyst Oxidation (Section 300)...11-3
 Dimethyl Adipate Recovery (Section 400)...11-4
 Hydrolysis and Crystallization (Section 500)..11-4

 PROCESS ECONOMICS...11-5

APPENDIX A: PATENT SUMMARY TABLES..A-1

APPENDIX B: DESIGN AND COST BASES..B-1

APPENDIX C: CITED REFERENCES ...C-1

APPENDIX D: PATENT REFERENCES BY COMPANY...D-1

APPENDIX E: PROCESS FLOW DIAGRAMS...E-1
ILLUSTRATIONS

2.1 Regional Butadiene Demand... 2-3
2.2 Growth Rates for Regional Butadiene Demand................................. 2-4
2.3 Global Butadiene Surplus... 2-6
2.4 Butadiene Surplus By Region... 2-7
2.6 U.S. Butadiene and Ethylene Prices, 1994–1997............................ 2-9
2.7 U.S. Butadiene/Ethylene Price Ratio History, 1994–1997................. 2-10
2.8 Butadiene Prices in the United States—Ethylene-Based Projections... 2-12
2.9 Butadiene Prices Based on Butane Values.. 2-13
2.10 Butadiene Prices Based on Butene Values....................................... 2-14
2.11 Summary of Projected BD Prices... 2-15
2.12 Styrene from Butadiene—Process Comparisons............................ 2-16
3.1 Regional Butadiene Demand... 3-6
3.2 Growth Rates for Regional Butadiene Demand................................. 3-7
3.3 Regional Butadiene Supply... 3-9
3.4 Increases in Butadiene Supply, 1996–2000.. 3-10
3.5 Global Butadiene Surplus... 3-11
3.6 Global Butadiene Capacity Utilization... 3-12
3.7 Butadiene Surplus by Region... 3-13
4.3 U.S. Butadiene and Ethylene Prices, 1994–1997............................ 4-4
4.5 U.S. and European Butadiene Prices, 1994–1997......................... 4-6
4.7 U.S. and Korean Butadiene Prices, 1994–1997............................... 4-8
4.8 Butadiene Price Deltas Relative to U.S. Prices............................... 4-9
5.1 Valuation Scheme for Butadiene as Alkylation Feed....................... 5-2
5.2 Value of Butadiene in Alkylate... 5-5
5.3 Butadiene Prices in the United States—Ethylene-Based Projections... 5-8
5.4 Value-Based Projection Scheme... 5-9
5.5 Butadiene Prices Based on Butane Values....................................... 5-9
ILLUSTRATIONS (Concluded)

5.6 Butadiene Prices Based on Butene Values ...5-10
5.7 Projected U.S. Butadiene Prices ..5-11
5.8 Value of Extracted Butadiene in Korea ..5-12
6.1 Cyclodimerization of Butadiene ...6-2
6.2 Acetoxylation of Butadiene ...6-3
6.3 Hydrocyanation of Butadiene ..6-4
6.4 Carboxylation of Butadiene ...6-8
6.5 Alkenylation of o-Xylene with Butadiene ...6-11
7.1 Styrene from Butadiene—Process Comparisons ..7-1
7.2 Ethylbenzene from Butadiene by DSM-Chiyoda ProcessE-3
7.3 Ethylbenzene from Butadiene by DSM-Chiyoda Process
 Net Production Cost or Product Value as a Function of Butadiene Price7-34
8.1 Caprolactam by Hydrocyanation of Butadiene—Process Flow8-1
8.2 Caprolactam from Adiponitrile by Partial Hydrogenation and
 6-Aminocapronitrile Cyclization ...E-5
8.3 Caprolactam by Hydrocyanation of Butadiene
 Effect of Operating Level and Plant Capacity on Product Value8-37
8.4 Caprolactam by Hydrocyanation of Butadiene
 Net Production Cost or Product Value as a Function of Butadiene Price8-38
9.1 Caprolactam by Carboalkoxylation of Butadiene ..E-7
9.2 Caprolactam by Carboalkoxylation of Butadiene
 Net Production Cost or Product Value as a Function of Butadiene Price9-12
10.1 HMDA from Butadiene via Adiponitrile by HydrocyanationE-11
10.2 HMDA from Butadiene via Adiponitrile by Hydrocyanation
 Net Production Cost or Product Value as a Function of Butadiene Price10-8
11-1 Adipic Acid from Butadiene by CarboalkoxylationE-15
11-2 Adipic Acid from Butadiene by Carboalkoxylation
 Net Production Cost or Product Value as a Function of Butadiene Price11-9
TABLES

2.1 Regional Butadiene Demand..2-2
2.2 Regional Butadiene Supply..2-5
2.3 Projected Values for Butadiene..2-11
2.4 Ethylbenzene from Butadiene or from Benzene and Ethylene
 Summary of Economics...2-18
2.5 Styrene from Butadiene or from Benzene and Ethylene
 Summary of Economics...2-19
2.6 Caprolactam from Cyclohexane or from Butadiene
 Summary of Economics...2-20
2.7 HMDA from Butadiene via Adiponitrile by Hydrocyanation
 Summary of Economics...2-22
2.8 Adipic Acid from Cyclohexane or from Butadiene
 Summary of Economics...2-23
3.1 Yields of Butadiene in Ethylene Plants..3-1
3.2 Global Butadiene Demand by End Use..3-2
3.3 Share of Butadiene Demand by Major End Use..........................3-3
3.4 Butadiene-Based Adiponitrile Plants...3-4
3.5 Butadiene-Based Butanediol Plants...3-4
3.6 Regional Butadiene Demand..3-5
3.7 Regional Butadiene Supply..3-8
5.1 Input Values for Butadiene Valuation...5-3
5.2 Value of Butadiene in Alkylate...5-4
5.3 Value of Butadiene as Butane..5-6
5.4 Butadiene Prices in the United States—Ethylene-Based Projections.....5-7
7.1 Cyclodimerization of Butadiene to 4-Vinylcyclohexene
 Patent Summary...A-3
7.2 Dehydrogenation of 4-Vinylcyclohexene to Ethylbenzene
 Patent Summary...A-9
7.3 Oxidative Dehydrogenation of 4-Vinylcyclohexene to Styrene
 Patent Summary...A-13
7.4 Ethylbenzene from Butadiene by DSM-Chiyoda Process
 Design Basis and Assumptions...7-6
7.5 Ethylbenzene from Butadiene by DSM-Chiyoda Process
 Stream Flows..7-10
7.6 Ethylbenzene from Butadiene by DSM-Chiyoda Process
 Major Equipment..7-12
TABLES (Continued)

7.7 Ethylbenzene from Butadiene by DSM-Chiyoda Process
Utilities Summary...7-14

7.8 Ethylbenzene from Butadiene by DSM-Chiyoda Process
Comparison of Dow and DSM-Chiyoda BD Dimerization Processes........7-16

7.9 Ethylbenzene from Butadiene by DSM-Chiyoda Process
Comparison of DSM-Chiyoda VCH Dehydrogenation and Dow VCH
Oxi-Dehydrogenation Processes..7-17

7.10 Ethylbenzene from Butadiene by DSM-Chiyoda Process
Waste Streams Summary..7-18

7.11 Ethylbenzene from Butadiene by DSM-Chiyoda Process
Total Capital Investment..7-21

7.12 Ethylbenzene from Butadiene by DSM-Chiyoda Process
Capital Investment by Section..7-22

7.13 Ethylbenzene from Butadiene by DSM-Chiyoda Process
Production Costs...7-23

7.14 Ethylbenzene from Butadiene by DSM-Chiyoda Process
Direct Costs by Section..7-25

7.15 Ethylbenzene from Benzene and Ethylene by Vapor-Phase Alkylation:
Third Generation
Production Costs...7-26

7.16 Ethylbenzene from Butadiene or from Benzene and Ethylene
Comparison of Economics..7-28

7.17 Styrene from Butadiene via 4-Vinylcyclohexane by the Dow Process
Production Costs...7-29

7.18 Styrene from Ethylbenzene by Adiabatic Dehydrogenation:
Two Reactors with Interstage Reheat
Production Costs...7-31

7.19 Styrene from Butadiene or from Benzene and Ethylene
Comparison of Economics..7-33

8.1 6-Aminocapronitrile by Selective Partial Hydrogenation of Adiponitrile
Patent Summary..A-16

8.2 Caprolactam by Cyclization of 6-Aminocapronitrile
Patent Summary..A-19

8.3 Caprolactam from Adiponitrile by Partial Hydrogenation and
6-Aminocapronitrile Cyclization
Design Bases and Assumptions..8-7

8.4 Caprolactam from Adiponitrile by Partial Hydrogenation and
6-Aminocapronitrile Cyclization
Stream Flows..8-11
TABLES (Concluded)

8.5 Caprolactam from Adiponitrile by Partial Hydrogenation and 6-Aminocaproic Acid Cyclization
Major Equipment..8-17
8.6 Caprolactam from Adiponitrile By Partial Hydrogenation and 6-Aminocaproic Acid Cyclization
Utilities Summary...8-21
8.7 Caprolactam from Adiponitrile by Partial hydrogenation and 6-Aminocaproic Acid Cyclization
Waste Streams Summary...8-23
8.8 Caprolactam from Adiponitrile by Partial Hydrogenation and 6-Aminocaproic Acid Cyclization
Total Capital Investment..8-26
8.9 Caprolactam from Adiponitrile by Partial Hydrogenation and 6-Aminocaproic Acid Cyclization
Capital Investment by Section...8-27
8.10 Caprolactam from Adiponitrile by Partial Hydrogenation and 6-Aminocaproic Acid Cyclization
Production Costs...8-28
8.11 Adiponitrile from Butadiene by Hydrocyanation
Production Costs...8-30
8.12 Caprolactam from Butadiene in an Integrated Facility
Production Costs...8-32
8.13 Caprolactam from Cyclohexane with Nitric Oxide Hydrogenation
Production Costs...8-34
8.14 Caprolactam from Cyclohexane or from Butadiene
Summary of Economics...8-36
9.1 Caprolactam by Carboalkoxylation of Butadiene
Design Bases and Assumptions..9-4
9.2 Caprolactam by Carboalkoxylation of Butadiene
Production Costs...9-10
10.1 HMDA from Butadiene via Adiponitrile by Hydrocyanation
Design Bases and Assumptions..10-2
10.2 HMDA from Butadiene via Adiponitrile by Hydrocyanation
Production Costs...10-6
11.1 Adipic Acid from Butadiene by Carboalkoxylation
Design Bases and Assumptions..11-2
11.2 Adipic Acid from Butadiene by Carboalkoxylation
Production Costs...11-6
11.3 Adipic Acid from Cyclohexane or from Butadiene
Summary of Economics..11-8