Abstract
Process Economics Program Report 32B
SMALL-SCALE HYDROGEN PLANTS
(July 2003)

A great deal of enthusiasm is currently noticeable for so-called environmentally clean and alternate fuels. These fuels that are synthesized from the primary fossil fuels such as natural gas, petroleum oil and coal, include gas-to-liquid fuels (diesel, gasoline and kerosene), methanol, dimethyl ether, liquefied petroleum gas, and hydrogen. Lately organically generated fuels, known as biofuels, such as ethanol and biodiesel have also invoked immense interest in the energy industry. However, no other fuel is being envisioned as the fuel of next century (21st century) as much as like hydrogen. Clean fuel advocates and energy zealots are presenting hydrogen as fuel of the future and future energy economy as hydrogen economy.

Hydrogen can be produced on large scale in centralized plants, or on small scale in localized production facilities. Large-scale, centralized production benefits from economies of scale, but suffers from disadvantages due to costly hydrogen storage and transportation infrastructure. Small-scale production, on the other hand, eliminates or reduces the problems of hydrogen storage and transportation, but comparatively has poorer investment and operation economics. A balance, thus, needs to be determined between the two to find out the better economic option for a given situation. This report evaluates factors (type of technology, feedstock, scale of production, gas storage, gas transportation, etc.) that affect, and are taken into consideration in bridging the balance between the economics of two alternatives. The report reviews the industrial work going on small reformers technology development and appraises technoeconomic aspects of small-scale, onsite hydrogen manufacture; the report also examines economic conditions for competitiveness of small-scale hydrogen plants with large plants. Three technologies are currently commercially viable, and used for onsite hydrogen production. They are described under the following headings:

- Small-Scale Hydrogen Production by Steam Reforming of Natural Gas (Sec 5)
- Small-Scale Hydrogen Production by Catalytic Partial Oxidation of Natural Gas (Sec 6)
- Small-Scale Hydrogen Production by Electrolysis of Water (Sec 7)

The report further examines the economic viability of hydrogen production from renewable-energy resources (solar and wind). Finally, hydrogen potential as energy source is compared vis-à-vis major conventional and alternate fuels (Sec 8). The overall conclusion is:

Small-sized, onsite hydrogen plants are in commercial market now, and can compete with large-sized plants under several circumstances (Sec 8). Minimum competitive capacity for small plant is 5,000–6,000 Nm3/hr. Natural gas-steam reforming currently is the most economic technology and will dominate as the main technology for hydrogen production for the next ten to fifteen years, even though efforts for more economic harnessing of renewable energy would gain more momentum.
CONTENTS

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1
 OVERVIEW OF COMMERCIAL HYDROGEN TECHNOLOGIES 2-1
 Steam Reforming.. 2-2
 Partial Oxidation ... 2-3
 Autothermal Reforming... 2-3
 Coal Gasification .. 2-4
 Miscellaneous Thermal Processes... 2-5
 Water Electrolysis... 2-5
 Solid Polymer Electrolyzer (SPE) .. 2-6
 Alkaline Water Electrolyzer (AWE) .. 2-6
 High Temperature Electrolyzer (HTE) ... 2-7
 HYDROGEN DISTRIBUTED PRODUCTION .. 2-8
 Small-Scale Hydrogen Technologies Status.. 2-8
 Main Commercial Technologies for Small-Scale Hydrogen Production 2-10
 PROCESS ECONOMICS... 2-11
 Hydrogen Costs Via Solar-Radiation Based Water Electrolysis 2-17
 Hydrogen Costs Via Wind-Energy Based Water Electrolysis 2-18
 Gas Compression & Storage Costs ... 2-18
 Onsite Hydrogen Plant Versus Centralized Plant .. 2-22
 Hydrogen Competitiveness as Energy Source with Other Fuels 2-23
 Key Points and Conclusions... 2-27

3 INDUSTRIAL STATUS .. 3-1

4 TECHNOLOGY REVIEW ... 4-1
 OVERVIEW OF PRODUCTION TECHNOLOGIES ... 4-2
 Steam Reforming.. 4-2
CONTENTS (Continued)

Partial Oxidation ... 4-4
Autothermal Reforming ... 4-4
Coal Gasification .. 4-5
Miscellaneous Thermal Processes ... 4-5
Water Electrolysis ... 4-6
 Solid Polymer Electrolyzer (SPE) ... 4-6
 Alkaline Water Electrolyzer (AWE) ... 4-7
 High Temperature Electrolyzer (HTE) ... 4-8
DISTRIBUTED PRODUCTION OF HYDROGEN .. 4-9
SMALL-SCALE HYDROGEN PRODUCTION ... 4-9
 Industrial Overview ... 4-9
 Technical Review ... 4-11
 Patents & Literature Review .. 4-12
 Shell & Tube Reformers .. 4-12
 Plate-Type Reformers ... 4-37
 Electrolyzers .. 4-45
 New-Generation Technologies .. 4-46
 Renewable Resources Based Technologies ... 4-48
 Solar or Photovoltaic (PV) Units ... 4-48
 Wind Powered H₂ Production ... 4-50
 H₂ from Biomass .. 4-50
CURRENT MARKET FOR SMALL H₂ PLANTS .. 4-53

5 SMALL-SCALE HYDROGEN PRODUCTION BY STEAM REFORMING OF NATURAL GAS ... 5-1
 PROCESS DESCRIPTION ... 5-2
 PROCESS DISCUSSION ... 5-4
 COST ESTIMATES ... 5-11
 Fixed-Capital Costs ... 5-11
ILLUSTRATIONS (Continued)

4.11 Sectional View of IFC's Autothermal Reformer Showing Premixing System of Feed Gases ... 4-25
4.12 Sectional View of IFC's Integrated Unit of Hydrodesulfurization and Shift Conversion ... 4-27
4.13 Sectional View of Compact Reformer by H₂GEN Innovations Inc. .. 4-30
4.14 Sectional View of Compact Reformer by H₂GEN Innovations Inc. .. 4-32
4.15 Sectional View of Compact Reformer by H₂GEN Innovations Inc. .. 4-33
4.16 Sectional View of Reformer by Ballard Power Systems .. 4-35
4.17 Sectional Top View of Reformer by Ballard Systems .. 4-36
4.18 Isometric View of Reformer-Tubes Assembly by Northwest Power System .. 4-39
4.19 Sectional View of Reformer-Tubes Assembly by Northwest Power System .. 4-39
4.20 Isometric View of Composite-Plates Type Reformer by IFC .. 4-40
4.21 Sectional View of Stacked-Plates Reformer by ZTEK Corporation .. 4-41
4.22 Catalyst Arrangement in Stacked-Plates Reformer by ZTEK Corporation .. 4-42
4.23 Sectional View of Plate-Type Reformer by Ishikawajima-Harima Heavy Industries .. 4-44
5.2 Small-Scale Hydrogen Production by Steam Reforming of Natural Gas Effect of Natural Gas Price on Production Costs and Product Value Of Hydrogen for Base-Capacity Plant .. 5-17
5.3 Small-Scale Hydrogen Production by Steam Reforming of Natural Gas Effect of Natural Gas Price on Production Costs and Product Value Of Hydrogen for Base-Capacity Plant .. 5-17
5.4 Small-Scale Hydrogen Production by Steam Reforming of Natural Gas Effect of Plant Size on Production Costs and Product Value of Hydrogen .. 5-18
5.5 Small-Scale Hydrogen Production by Steam Reforming of Natural Gas Effect of Plant Size on Production Costs and Product Value of Hydrogen .. 5-18
6.2 Small-Scale Hydrogen Production by Catalytic Partial Oxidation of Natural Gas Effect of Natural Gas Price on Production Costs and Product Value of Hydrogen for Base-Capacity Plant .. 6-18
ILLUSTRATIONS (Concluded)

6.3 Small-Scale Hydrogen Production by Catalytic Partial Oxidation of Natural Gas
Effect of Natural Gas Price on Production Costs and Product Value of Hydrogen for Base-Capacity Plant ... 6-18

6.4 Small-Scale Hydrogen Production by Catalytic Partial Oxidation of Natural Gas
Effect of Plant Size on Production Costs and Product Value of Hydrogen 6-19

6.5 Small-Scale Hydrogen Production by Catalytic Partial Oxidation of Natural Gas
Effect of Plant Size on Production Costs and Product Value of Hydrogen 6-19

7.2 Small-Scale Hydrogen Production by Electrolysis of Water
Effect of Electricity Price on Production Costs and Product Value of Hydrogen for Base-Capacity Plant ... 7-15

7.3 Small-Scale Hydrogen Production by Electrolysis of Water
Effect of Electricity Price on Production Costs and Product Value of Hydrogen for Base-Capacity Plant ... 7-15

8.1 Small-Scale Hydrogen Production from Natural Gas
Effect of Natural Gas Price on Production Costs in Steam Reforming and Catalytic Partial Oxidation Processes (for Base Capacity of 1,000 NM³/HR) ... 8-6

8.2 Small-Scale Hydrogen Production by Electrolysis of Water
Effect of Electricity Price on Production Costs of Hydrogen for Base-Capacity Plant ... 8-6

8.3 Small-Scale Hydrogen Production
Product Value of Hydrogen for Various Rates of Return on Investment 8-7

8.4 Compression Power Requirement for Hydrogen Gas from Base Pressure = 1 Atmosphere .. 8-14

8.5 Hydrogen-Storage Compressor Installed Costs
Base Pressure = 1 Atmosphere .. 8-14

8.6 Installed Costs of Storage Vessel as a Function of Pressure and Storage Size ... 8-15

8.7 Cumulative Installed Costs of Compressor & Storage Vessel for a Generic System as a Function of Storage Pressure and Size 8-15

8.8 Hydrogen Gasoline-Equivalent Cost as a Function of Gasoline Price for Same Energy Cost at Wheels .. 8-21
TABLES

2.1 Hydrogen Global Production ... 2-5
2.2 Small-Scale, Onsite Hydrogen Plants
Total Capital Investment .. 2-13
2.3 Small-Scale, Onsite Hydrogen Plants
Production Costs .. 2-14
2.4 Properties of Various Fuels ... 2-245.6
2.5 Well-To-Wheel Energy Consumption Chain for Fuels 2-26
2.6 Well-To-Wheel Emissions Rates for Various Fuels Chain 2-27
4.1 Industry Segment .. 4-1
4.2 Hydrogen Main Global Sources .. 4-6
4.3 PV Module Specifications .. 4-50
4.4 Comparison for Wind Turbo-Generator Versus Photo Voltaic
for Equal Investment ... 4-52
4.5 Small Scale Hydrogen Plants
Patent Summary ... A-3
5.1 Small-Scale Hydrogen Production by Steam Reforming of Natural Gas 5-6
5.2 Small-Scale Hydrogen Production by Steam Reforming of Natural Gas
Steam Flows ... 5-8
5.3 Small-Scale Hydrogen Production by Steam Reforming of Natural Gas
Major Equipment .. 5-10
5.4 Small-Scale Hydrogen Production by Steam Reforming of Natural Gas
Utilities Summary .. 5-13
5.5 Small-Scale Hydrogen Production by Steam Reforming of Natural Gas
Total Capital Investment .. 5-14
5.6 Small-Scale Hydrogen Production by Steam Reforming of Natural Gas
Production Costs .. 5-15
6.1 Small-Scale Hydrogen Production by Catalytic Partial Oxidation of Natural Gas
Design Bases ... 6-5
6.2 Small-Scale Hydrogen Production by Catalytic Partial Oxidation of Natural Gas
Steam Flows ... 6-9
6.3 Small-Scale Hydrogen Production by Catalytic Partial Oxidation of Natural Gas
Major Equipment .. 6-11
TABLES (Concluded)

6.4 Small-Scale Hydrogen Production by Catalytic Partial Oxidation of Natural Gas
Utilities Summary ... 6-14

6.5 Small-Scale Hydrogen Production by Catalytic Partial Oxidation of Natural Gas
Total Capital Investment .. 6-15

6.6 Small-Scale Hydrogen Production by Catalytic Partial Oxidation of Natural Gas
Production Costs .. 6-16

7.1 Small-Scale Hydrogen Production by Electrolysis of Water
Design Bases ... 7-5

7.2 Small-Scale Hydrogen Production by Electrolysis of Water
Stream Flows .. 7-7

7.3 Small-Scale Hydrogen Production by Electrolysis of Water
Major Equipment ... 7-8

7.4 Small-Scale Hydrogen Production by Electrolysis of Water
Utilities Summary ... 7-9

7.5 Small-Scale Hydrogen Production by Electrolysis of Water
Total Capital Investment .. 7-12

7.6 Small-Scale Hydrogen Production by Electrolysis of Water
Production Costs .. 7-13

8.1 Overall Comparison of Process Economics
Total Fixed Capital for Base Capacities 8-2

8.2 Production Costs for Base Capacities 8-3

8.3 Overall Comparison of Process Economics
Total Fixed Capital and Production Costs 8-5

8.4 Properties of Various Fuels ... 8-19

8.5 Well-To-Wheel Energy Consumption Chain for Fuels 8-22

8.6 Well-To-Wheel Emissions Rates for Various Fuels Chain 8-23