The prospects for ethylene demand remain strong but much of the future increase in production capacity may come from incremental enhancement of existing plants, rather than from new “grass-roots” production facilities. Steam cracking for ethylene originated as early as the 1920s and was commercialized in the 1950s. The importance of ethylene continues to drive research and development of this technology along with the exploration of nonconventional technologies in order to achieve higher yields of olefins and lower capital and operating costs. However, as recently discussed in PEP Report 29F, Ethylene by Nonconventional Processes (August 1998), it is unlikely nonconventional processes will replace steam cracking for ethylene production in the foreseeable future. This study examines potential improvements in conventional steam cracker operations with emphasis on improving the competitive edge of existing plants.

Ethane, LPG and naphtha are the dominant steam cracker feedstocks. Natural gas condensate is abundant in North America and the Middle East while naphtha is commonly used in Asia and Europe. Since the 1970s many new ethylene plants have been built with feedstock flexibility. In PEP Report 220, Ethylene Feedstock Outlook (May 1999), SRIC currently projects that generally ethylene feedstocks supply will be adequate over the next decade even considering that the demand for ethylene is increasing twice as fast as petroleum refining (4-5%/year versus 2%/year).

Significant technological developments exist for all sections of the ethylene steam cracker that could be implemented in plant revamps. Examples include new large capacity yet compact and efficient furnaces; coke inhibition technology; larger, more efficient compressors; fractionation schemes; mixed refrigerants; and advance control and optimization systems.

This report should provide a useful overview of process developments since PEP Report 29E, Ethylene, issued in 1991 for people involved in research and development or planning investment in new ethylene plants as well as those involved with planning, managing, operating, and designing existing plants.
CONTENTS

1 INTRODUCTION.. 1-1

2 CONCLUSIONS... 2-1

3 SUMMARY... 3-1

COMMERCIAL ASPECTS.. 3-1

TECHNICAL ASPECTS.. 3-2

ECONOMIC ASPECTS.. 3-3

4 INDUSTRY STATUS.. 4-1

DEMAND AND PRODUCTION OUTLOOK... 4-1

 Uses of Ethylene... 4-1

 Demand.. 4-2

 Prices ... 4-3

 By-product Demand.. 4-5

FEEDSTOCKS SUPPLY AND DEMAND... 4-5

REGULATORY CLIMATE... 4-10

 Air Emissions.. 4-11

 Water Discharges ... 4-13

 Waste Disposal ... 4-13

 Future Regulation ... 4-14

INDUSTRY CAPACITY .. 4-14

 Plant Capacities.. 4-16

 New Capacity.. 4-27

5 STEAM CRACKING PROCESS REVIEW .. 5-1

YIELDS .. 5-1

FEEDSTOCKS AND PURIFICATION... 5-2

 Feedstock Contaminants and Impurities ... 5-3

 Ethylene and Propylene Specifications .. 5-12

 Butadiene Specifications... 5-12
CONTENTS (Continued)

5 **STEAM CRACKING PROCESS REVIEW (Continued)**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMISTRY</td>
<td>5-15</td>
</tr>
<tr>
<td>Reaction Mechanism</td>
<td>5-15</td>
</tr>
<tr>
<td>Selective Hydrogenation</td>
<td>5-17</td>
</tr>
<tr>
<td>Selective Hydrogenation Catalysts</td>
<td>5-19</td>
</tr>
<tr>
<td>Caustic Tower Fouling</td>
<td>5-21</td>
</tr>
<tr>
<td>Spent Caustic Oxidation</td>
<td>5-21</td>
</tr>
<tr>
<td>MAJOR SEPARATION SCHEMES</td>
<td>5-22</td>
</tr>
<tr>
<td>STEAM CRACKING PROCESSES</td>
<td>5-24</td>
</tr>
<tr>
<td>Linde AG</td>
<td>5-24</td>
</tr>
<tr>
<td>Kellogg Brown & Root</td>
<td>5-27</td>
</tr>
<tr>
<td>ABB Lummus Global</td>
<td>5-29</td>
</tr>
<tr>
<td>Stone & Webster</td>
<td>5-30</td>
</tr>
<tr>
<td>Technip</td>
<td>5-31</td>
</tr>
<tr>
<td>Advanced Extraction Technologies</td>
<td>5-32</td>
</tr>
<tr>
<td>UOP</td>
<td>5-33</td>
</tr>
<tr>
<td>Thermocatalysis</td>
<td>5-34</td>
</tr>
<tr>
<td>INTEGRATED ETHYLENE PLANTS</td>
<td>5-34</td>
</tr>
<tr>
<td>Ethylene Derivatives Plant Integration</td>
<td>5-34</td>
</tr>
<tr>
<td>Natural Gas Liquids Integration</td>
<td>5-35</td>
</tr>
<tr>
<td>C₄ Process Integration</td>
<td>5-35</td>
</tr>
<tr>
<td>Methanol to Olefins Integration</td>
<td>5-36</td>
</tr>
<tr>
<td>Integrated Propylene Production</td>
<td>5-36</td>
</tr>
<tr>
<td>SELECTIVE HYDROGENATION PROCESSES</td>
<td>5-37</td>
</tr>
<tr>
<td>Acetylene</td>
<td>5-37</td>
</tr>
<tr>
<td>Methylacetylene/Propadiene</td>
<td>5-38</td>
</tr>
<tr>
<td>Catalysts Handling</td>
<td>5-40</td>
</tr>
<tr>
<td>ETHYLENE STORAGE</td>
<td>5-40</td>
</tr>
<tr>
<td>MAINTENANCE AND SAFETY</td>
<td>5-40</td>
</tr>
</tbody>
</table>
5 STEAM CRACKING PROCESS REVIEW (CONCLUDED)

MAINTENANCE AND SAFETY (Concluded)

Maintenance ... 5-41
Safety and Startup .. 5-42

6 ADVANCES IN STEAM CRACKING TECHNOLOGY .. 6-1

LIFE CYCLE EXTENSION ... 6-2
REVAMPING .. 6-2
DILUTION STEAM SYSTEM ... 6-3
CRACKING FURNACES ... 6-4
 Burner Technology .. 6-5
 Refractory Coating .. 6-7
 Cracking Coils .. 6-7
 Tube Metallurgy ... 6-8
 Ceramic Furnace .. 6-10
COKE INHIBITION TECHNOLOGY .. 6-14
 Furnace Coke .. 6-16
 TLE Coke .. 6-19
 Antifoulants .. 6-19
 Surface Coatings .. 6-21
 Micro-Alloys .. 6-23
QUENCHING .. 6-23
COMPRESSION .. 6-25
ETHYLENE PURIFICATION .. 6-27
 Amine Treatment .. 6-27
 Caustic Scrubbing ... 6-27
 Spent Caustic Disposal .. 6-28
 Liquid Feedstocks .. 6-29
 Drying ... 6-29
CONTENTS (Continued)

6 ADVANCES IN STEAM CRACKING TECHNOLOGY (CONCLUDED)

FRACTIONATION .. 6-29
Demethanizer .. 6-30
Predemethanization ... 6-31
High Temperature Demethanization ... 6-33
Deethanizer ... 6-33
C₂ Splitter ... 6-36
C₃ Splitter ... 6-37

REFRIGERATION .. 6-37
Conventional Refrigeration ... 6-38
Mixed Refrigerants ... 6-41

CONTROL SYSTEMS ... 6-44
Instrumentation .. 6-44
Multivariable Control .. 6-45
Optimization .. 6-47
Case Studies .. 6-48

PLANT REVAMP CASE STUDIES ... 6-50
Large Expansion of a Smaller Plant ... 6-50
Moderate Expansion of a Newer Smaller Plant .. 6-51
Large Expansion of a Large Older Cracker ... 6-51
Large Expansion of a New Ethane Cracker ... 6-53
Converting Feedstock Type ... 6-54
Other Case Studies ... 6-54

7 ECONOMICS OF STEAM CRACKING .. 7-1

PROCESS DESCRIPTION ... 7-1
Section 100 – Cracking and Quenching .. 7-4
Section 200 – Compression and Deacidification 7-15
Section 300 – C₂ Recovery .. 7-16
Section 400 – Ethylene Separation and Autorefrigeration 7-17
CONTENTS (Continued)

7 ECONOMICS OF STEAM CRACKING (Concluded)

PROCESS DESCRIPTION (Concluded)

- Section 500 – Propylene Refrigeration .. 7-18
- Section 600 – Methane Refrigeration ... 7-18

PROCESS DISCUSSION ... 7-19

- Feedstock ... 7-19
- Furnaces ... 7-20
- Oil-Water Separators .. 7-21
- Compressors .. 7-21
- Heat Exchangers .. 7-22
- Distillation Columns .. 7-22
- Ethylene Pump ... 7-22
- Steam Generation ... 7-22
- Plant Staffing .. 7-23

COST ESTIMATES ... 7-24

- Capital Costs .. 7-24
- Production Costs ... 7-29
- Profitability .. 7-29

APPENDIX A: PATENT SUMMARY TABLE ... A-1

APPENDIX B: DESIGN AND COST BASES ... B-1

- DESIGN CONDITIONS ... B-3
- COST BASES .. B-3
- Capital Investment ... B-3
- Production Costs ... B-4
- Effect of Operating Level on Production Costs ... B-4
CONTENTS (Concluded)

APPENDIX C: CITED REFERENCES ... C-1
 LITERATURE ... C-3
 PATENTS ... C-21
 PEP PUBLICATIONS ... C-30

APPENDIX D: PATENT REFERENCES BY COMPANY D-1

APPENDIX E: PROCESS FLOW DIAGRAMS .. E-1
ILLUSTRATIONS

4.1 ETHYLENE SUPPLY AND DEMAND ... 4-3
4.2 ETHYLENE PRICE HISTORY ... 4-4
4.3 WORLD ETHYLENE FEEDSTOCK BALANCE ... 4-9
5.1 C2/C3 CRACKING PROCESS, LINDE AG ... 5-24
5.2 LINDE PYROCRACK COILS ... 5-26
5.3 TWIN RADIANT CELL CRACKING FURNACE (LINDE AG) 5-26
5.4 SCORE — FULL PRODUCT RECOVERY SCHEME 5-28
5.5 ABB LUMMUS GLOBAL ETHYLENE PROCESS ... 5-29
5.6 STONE & WEBSTER ETHYLENE PROCESS ... 5-30
5.7 ADEP ETHYLENE PROCESS (ADVANCED EXTRACTION TECHNOLOGIES, INC.) ... 5-33
6.1 CERAMIC PYROLYSIS FURNACE (IFP) ... 6-12
6.2 SINGLE-ENDED RADIANT TUBE ELEMENT FOR CERAMIC FURNACE 6-13
6.3 PILOT CERAMIC FURNACE ... 6-14
6.4 FURNACE TUBE DECKING FREQUENCY .. 6-15
6.5 CONVENTIONAL DEMETHANIZER FEED Chiller 6-31
6.6 ABSORBERS AUGMENT DEMETHANIZER ... 6-32
6.7 DEPHELMATOR CONCEPT ... 6-32
6.8 CONVENTIONAL HIGH PRESSURE DEETHANIZER 6-34
6.9 DEETHANIZER WITH HEAT PUMPED C2 SPLITTER 6-34
6.10 ADVANCED C2 PROCESSING SYSTEM ... 6-35
6.11 PROPOSED REVAMPED DEETHANIZER ... 6-36
6.12 REFRIGERATION LEVELS OF ETHYLENE CONDENSATION PROCESS 6-39
6.13 PURE COMPONENT MULTISTAGE, CASCaded REFRIGERATION PROCESS ... 6-40
6.14 HEATING AND COOLING CURVES FOR CONVENTIONAL REFRIGERATION PROCESS ... 6-40
6.15 A MULTILEVEL MIXED REFRIGERATION PROCESS 6-42
ILLUSTRATIONS (Concluded)

6.16 HEATING AND COOLING CURVES FOR A MULTILEVEL MIXED REFRIGERATION PROCESS ... 6-43

7.1 ETHYLENE FROM ETHANE BY CONVENTIONAL STEAM CRACKING PROCESS FLOW DIAGRAMS ... E-1
TABLES

3.1 SUMMARY OF COST ESTIMATES FOR ETHYLENE FROM ETHANE BY STEAM CRACKING... 3-5
4.1 USES OF ETHYLENE ... 4-1
4.2 PROJECTED ETHYLENE DERIVATIVES DEMAND.. 4-2
4.3 ETHYLENE AND FEEDSTOCKS PRICE SUMMARY.. 4-5
4.4 ETHYLENE FEEDSTOCKS... 4-6
4.5 WORLD ETHYLENE FEEDSTOCK DISTRIBUTION.. 4-6
4.6 WORLD NATURAL GAS LIQUIDS PRODUCTION – 1998............................... 4-7
4.7 ETHYLENE FEEDSTOCK BALANCE.. 4-9
4.8 REQUIRED EMISSION OFFSETS .. 4-12
4.9 GROWTH IN ETHYLENE CAPACITY AND PRODUCTION, 1999 TO 2008 4-15
4.10 WORLD ETHYLENE PLANT CAPACITIES AND LOCATIONS.......................... 4-16
4.11 AVERAGE ETHYLENE PLANT CAPACITY.. 4-27
4.12 ETHYLENE CAPACITY GROWTH SUMMARY, 1999 TO 2008....................... 4-29
4.13 NEW AND PROSPECTIVE ETHYLENE PLANT CONSTRUCTION..................... 4-30
5.1 TYPICAL PRODUCT YIELDS FROM COMMON FEEDSTOCKS 5-1
5.2 QUALITY OF COMMON ETHANE AND ETHANE-PROPANE MIXTURES....... 5-3
5.3 ETHYLENE FEEDSTOCK CONTAMINANTS.. 5-4
5.4 IMPURITIES IN ETHYLENE AND PROPYLENE ... 5-8
5.5 NGL CONTAMINANT SURVEY RESULTS.. 5-10
5.6 DISTRIBUTION OF MERCURY IN STEAM CRACKER EFFLUENT 5-11
5.7 POLYMER GRADE ETHYLENE SPECIFICATIONS... 5-13
5.8 TYPICAL PROPYLENE SPECIFICATIONS.. 5-14
5.9 SIMPLIFIED REACTIONS OF ETHANE CRACKING WITH ARRHENIUS CONSTANTS... 5-16
5.10 OPERATING CONDITIONS FOR SELECTIVE ACETYLENE HYDROGENATION ... 5-38
5.11 RUNAWAY REACTOR INCIDENTS ... 5-39
5.12 EFFECT OF FEEDSTOCK CRACKED ON PLANT TURNAROUNDS 5-41
<table>
<thead>
<tr>
<th>TABLES (Concluded)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 COST DISTRIBUTION IN EXTENDING A 27 YEAR OLD PLANT FOR 25 YEARS</td>
<td>6-2</td>
</tr>
<tr>
<td>6.2 COMPARISON OF HIGH SELECTIVITY AND LOW SELECTIVITY COILS</td>
<td>6-9</td>
</tr>
<tr>
<td>6.3 NOMINAL COMPOSITION OF COMMON PYROLYSIS TUBE ALLOYS</td>
<td>6-10</td>
</tr>
<tr>
<td>6.4 RANKING OF GENERIC ALLOYS FOR CRACKING TUBES</td>
<td>6-11</td>
</tr>
<tr>
<td>6.5 ANTIFOULANT PATENTS</td>
<td>6-19</td>
</tr>
<tr>
<td>6.6 COMPARISON OF MULTILEVEL MIXED REFRIGERATION AND CONVENTIONAL REFRIGERATION</td>
<td>6-44</td>
</tr>
<tr>
<td>6.7 TYPICAL ON-LINE ANALYZER LOCATIONS IN A STEAM CRACKER</td>
<td>6-46</td>
</tr>
<tr>
<td>6.8 CONTROLLER SUMMARY IN WORLD-CLASS ETHYLENE PLANT</td>
<td>6-47</td>
</tr>
<tr>
<td>7.1 ETHYLENE FROM ETHANE BY STEAM CRACKING DESIGN BASIS AND ASSUMPTIONS</td>
<td>7-2</td>
</tr>
<tr>
<td>7.2 ETHYLENE FROM ETHANE BY STEAM CRACKING PRODUCT YIELDS</td>
<td>7-3</td>
</tr>
<tr>
<td>7.3 ETHYLENE FROM ETHANE BY STEAM CRACKING PRODUCT PROPERTIES</td>
<td>7-4</td>
</tr>
<tr>
<td>7.4 ETHYLENE FROM ETHANE BY STEAM CRACKING MAJOR STREAM FLOWS</td>
<td>7-5</td>
</tr>
<tr>
<td>7.5 ETHYLENE FROM ETHANE BY STEAM CRACKING REFRIGERANT STREAM FLOWS</td>
<td>7-10</td>
</tr>
<tr>
<td>7.6 ETHYLENE FROM ETHANE BY STEAM CRACKING MAJOR EQUIPMENT LIST</td>
<td>7-11</td>
</tr>
<tr>
<td>7.7 ETHYLENE FROM ETHANE BY STEAM CRACKING UTILITIES SUMMARY</td>
<td>7-14</td>
</tr>
<tr>
<td>7.8 FURNACE HEAT DISTRIBUTION</td>
<td>7-21</td>
</tr>
<tr>
<td>7.9 OPERATOR STAFFING</td>
<td>7-23</td>
</tr>
<tr>
<td>7.10 ETHYLENE FROM ETHANE BY STEAM CRACKING TOTAL CAPITAL INVESTMENT</td>
<td>7-25</td>
</tr>
<tr>
<td>7.11 ETHYLENE FROM ETHANE BY STEAM CRACKING CAPITAL INVESTMENT BY SECTION</td>
<td>7-26</td>
</tr>
<tr>
<td>7.12 ETHYLENE FROM ETHANE BY STEAM CRACKING PRODUCTION COSTS</td>
<td>7-30</td>
</tr>
<tr>
<td>7.13 EFFECT OF PLANT CAPACITY AT 25% ROI</td>
<td>7-32</td>
</tr>
<tr>
<td>7.14 SENSITIVITY OF COSTS AND PROFIT</td>
<td>7-34</td>
</tr>
</tbody>
</table>