Abstract
Process Economics Program Report 22D
PHENOL
(December 2005)

Since its commercialization in the early 1950s, the cumene hydroperoxide (CHP) process has become the dominant technology for phenol production. Well over 90% of world phenol production is based on this technology.

A drawback of this route to phenol is the substantial production of acetone coproduct. While well established global markets for acetone exist, the demand for this coproduct has not always kept pace with the demand for phenol in certain regions. This has been a factor stimulating interest in new "non-coproduct" phenol technologies which would produce phenol directly from benzene.

The focus of this report is a comparative evaluation of two non-coproduct phenol production processes which appear to be ready for commercialization – Solutia’s AlphOx process and Misui’s cyclohexene based process – and how these processes compare with conventional CHP based phenol production. The scope of this report also includes a market status assessment of supply and demand trends for the various alternative feedstocks for these three routes to phenol production, as well as for acetone and phenol.
Report No. 22D

PHENOL

by George J. Apanel

December 2005

A private report by the
PROCESS ECONOMICS PROGRAM

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1

 MARKETS ... 2-1
 TECHNOLOGY .. 2-2
 New Shell Phenol Process ... 2-2
 COMPARITIVE PRODUCTION ECONOMICS .. 2-3
 Possible Niche Market Applications for the Solutia Process 2-4
 DESIGN SCHEMES & SYSTEM DESCRIPTIONS.. 2-6
 PATENT SUMMARY, CITED REFERENCES, AND DESIGN & COST BASIS........... 2-6
 ACKNOWLEDGEMENTS ... 2-6

3 CONCLUSIONS ... 3-1

4 INDUSTRY STATUS .. 4-1

 HISTORY OF COMMERCIAL PHENOL PRODUCTION ... 4-1
 Obsolete Commercial Synthetic Routes ... 4-1
 Current Commercial Synthetic Routes ... 4-2
 WORLDWIDE PHENOL PLANT PRODUCTION CAPACITIES 4-2
 PHENOL SUPPLY & DEMAND .. 4-7
 Phenol Supply & Demand in the United States .. 4-10
 Phenol Supply & Demand in Western Europe ... 4-11
 Phenol Supply & Demand in Japan .. 4-12
 SUPPLY & DEMAND FOR ALTERNATIVE PHENOL PROCESS FEEDS AND COPRODUCTS ... 4-13
 Supply & Demand for Acetone ... 4-13
 Supply & Demand for Propylene .. 4-17
 Supply & Demand for Ammonia ... 4-19
 MARKET PRICE TRENDS ... 4-21
CONTENTS (Continued)

Section 300 – Cyclohexanol Dehydrogenation .. 7-4
Section 400 – Cyclohexane Dehydrogenation ... 7-4
PROCESS DISCUSSION... 7-16
Hydrogenation Reaction... 7-16
Catalyst... 7-16
Other Additives ... 7-16
Hydrogen Usage... 7-16
Phase separation in S-101A-C... 7-17
Materials of Construction.. 7-17
Water Addition Reaction.. 7-17
p-Toluene Sulfonic Acid Recovery ... 7-17
Materials of Construction.. 7-17
Cyclohexanol Dehydrogenation Reaction ... 7-18
Cyclohexane Dehydrogenation Reaction.. 7-18
Extractive Distillation Columns ... 7-18
PROCESS ECONOMICS... 7-19
Capital Costs .. 7-19
Production Costs .. 7-19
Basis for Cost Estimates .. 7-20

8 PHENOL PRODUCTION VIA THE ALPOX PROCESS WITH CAPTIVE NITROUS
OXIDE SYNTHESIS ... 8-1
GENERAL TECHNOLOGY REVIEW .. 8-1
Nitrous Oxide Sources, Purity Requirement & Synthesis .. 8-2
PROCESS DESCRIPTION ... 8-3
Section 100 – Nitrous Oxide Synthesis .. 8-4
Section 200 – Benzene Hydroxylation ... 8-4
Section 300 – Phenol and Benzene Recovery ... 8-5
ILLUSTRATIONS

2.1 Petrochemical Market Value Chain for CHP Based Phenol Production 2-4
2.2 Hybrid Alphox/CHP Polycarbonate Production Scheme................................. 2-5
2.3 Integrated Alphox/Adipic Acid Scheme .. 2-5
4.1 Phenol Price Comparison by Region ... 4-21
4.2 Acetone Price Comparison by Region ... 4-22
4.3 Cumene Price ... 4-22
4.4 Polymer Grade Propylene Price Comparison by Region 4-23
4.5 Benzene Price Comparison by Region .. 4-23
4.6 Wholesale FOB Ammonia Price .. 4-24
5.1 Phenol from Cumene Products, By-Products, and Intermediates 5-3
6.1 Phenol from Cumene via Cumene Hydroperoxide D-3
6.2 Phenol Product Value Vs Cumene Cost with Plant Capacity as a Parameter 6-29
6.3 Phenol Product Value Vs Acetone Value with Plant Capacity as a Parameter 6-30
7.1 Phenol from Benzene via Cyclohexene ... D-7
7.2 Phenol Product Value is Benzene Cost with Plant Capacity as a Parameter 7-26
8.1 Phenol from Benzene by Single-Step Hydroxylation with On-Purpose with N20 Production ... D-11
8.2 Phenol Product Value Vs Benzene Cost with Plant Capacity as a Parameter 8-19
8.3 Phenol Product Value Vs Ammonia Cost with Plant Capacity as a Parameter 8-20
TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparative Phenol Production Economics</td>
<td>2-7</td>
</tr>
<tr>
<td>4.1</td>
<td>Top Phenol Producers Worldwide</td>
<td>4-3</td>
</tr>
<tr>
<td>4.2</td>
<td>Worldwide Phenol Plant Production Capacities</td>
<td>4-3</td>
</tr>
<tr>
<td>4.3</td>
<td>Planned Plant Expansions</td>
<td>4-6</td>
</tr>
<tr>
<td>4.4</td>
<td>Global Phenol Supply & Demand</td>
<td>4-8</td>
</tr>
<tr>
<td>4.5</td>
<td>Global Phenol Supply & Demand Regional Breakdown</td>
<td>4-9</td>
</tr>
<tr>
<td>4.6</td>
<td>Phenol Supply & Demand in United States</td>
<td>4-10</td>
</tr>
<tr>
<td>4.7</td>
<td>Phenol Supply & Demand in Western Europe</td>
<td>4-11</td>
</tr>
<tr>
<td>4.8</td>
<td>Phenol Supply & Demand in Japan</td>
<td>4-12</td>
</tr>
<tr>
<td>4.9</td>
<td>Global Acetone Supply & Demand Regional Breakdown</td>
<td>4-14</td>
</tr>
<tr>
<td>4.10</td>
<td>Global Acetone Supply & Demand</td>
<td>4-16</td>
</tr>
<tr>
<td>4.11</td>
<td>Global Propylene Supply & Demand Regional Breakdown</td>
<td>4-18</td>
</tr>
<tr>
<td>4.12</td>
<td>Regional Wholesale Ammonia FOB Prices in the United States</td>
<td>4-20</td>
</tr>
<tr>
<td>6.1</td>
<td>Phenol From Cumene Via Cumene Hydroperoxide Design Bases and Major Assumptions</td>
<td>6-6</td>
</tr>
<tr>
<td>6.2</td>
<td>Phenol From Cumene Via Hydroperoxide Stream Flows</td>
<td>6-7</td>
</tr>
<tr>
<td>6.3</td>
<td>Phenol From Cumene Via Hydroperoxide Major Equipment</td>
<td>6-17</td>
</tr>
<tr>
<td>6.4</td>
<td>Phenol From Cumene Via Oxygen-Based Liquid Oxidation Technology Utilities Summary</td>
<td>6-21</td>
</tr>
<tr>
<td>6.5</td>
<td>Phenol From Cumene Via Hydroperoxide Total Capital Investment</td>
<td>6-24</td>
</tr>
<tr>
<td>6.6</td>
<td>Phenol From Cumene Via Hydroperoxide Capital Investment By Section</td>
<td>6-25</td>
</tr>
<tr>
<td>6.7</td>
<td>Phenol From Cumene Via Hydroperoxide Production Costs</td>
<td>6-27</td>
</tr>
<tr>
<td>7.1</td>
<td>Phenol From Benzene Via Cyclohexene Design Bases</td>
<td>7-6</td>
</tr>
<tr>
<td>7.2</td>
<td>Phenol From Benzene Via Cyclohexene Major Equipment</td>
<td>7-7</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>7.3</td>
<td>Phenol From Benzene Via Cyclohexene Stream Flows</td>
<td>7-10</td>
</tr>
<tr>
<td>7.4</td>
<td>Phenol From Benzene Via Cyclohexene Utilities Summary</td>
<td>7-15</td>
</tr>
<tr>
<td>7.5</td>
<td>Phenol From Benzene Via Cyclohexene Total Capital Investment</td>
<td>7-21</td>
</tr>
<tr>
<td>7.6</td>
<td>Phenol From Benzene Via Cyclohexene Capital Investment by Section</td>
<td>7-22</td>
</tr>
<tr>
<td>7.7</td>
<td>Phenol From Benzene Via Cyclohexene Production Costs</td>
<td>7-24</td>
</tr>
<tr>
<td>8.1</td>
<td>Phenol From Benzene by Single-Step Hydroxylation Process Design Bases and Assumptions</td>
<td>8-6</td>
</tr>
<tr>
<td>8.2</td>
<td>Phenol From Benzene by Single-Step Hydroxylation Process Stream Flows</td>
<td>8-7</td>
</tr>
<tr>
<td>8.3</td>
<td>Phenol From Benzene Via the Alphox Process with Captive N₂O Synthesis from NH₃ Major Equipment</td>
<td>8-8</td>
</tr>
<tr>
<td>8.4</td>
<td>Phenol From Benzene Via the Alphox Process with Captive N₂O Synthesis from NH₃ Utilities Summary</td>
<td>8-11</td>
</tr>
<tr>
<td>8.5</td>
<td>Phenol From Benzene Via the Alphox Process with Captive N₂O Synthesis from NH₃ Total Capital Investment</td>
<td>8-15</td>
</tr>
<tr>
<td>8.6</td>
<td>Phenol From Benzene Via the Alphox Process with Captive N₂O Synthesis from NH₃ Capital Investment by Section</td>
<td>8-16</td>
</tr>
<tr>
<td>8.7</td>
<td>Phenol From Benzene Via the Alphox Process with Captive N₂O Synthesis from NH₃ Production Costs</td>
<td>8-17</td>
</tr>
</tbody>
</table>