ABSTRACT
Process Economics Program Report 18C
POLYETHYLENE TEREPHTHALATE
(September 2006)

Development and growth in the polyethylene terephthalate (PET) solid-state resin market since 1999 have been strong. Since their introduction in the mid-1970, global demand for these resins has reached 10.5 million metric tons by 2004. The global demand for these resins has continued to grow at high single-digit rates.

In the last few years, significant technology improvements associated with PET production have occurred. The main goal of these improvements has been to drastically reduce the production cost of PET, maximizing profitability. Eastman Chemical has developed a new process to produce PET, and is now constructing a new 350,000 t/y PET plant in South Carolina (USA) for making PET based on this process. It is scheduled for completion in 2007, Eastman Chemical is also considering building a 700,000 t/y PET plant to on line by 2009. Typically PET production plants start from purified terephthalic acid as a raw material. Eastman Chemical's new process, called the IntegRex™ process, produces PET from an integrated plant starting with p-xylene. The integrated plant combines the production of polymer-grade terephthalic acid and PET. The IntegRex™ process incorporates recent process improvements to produce Eastman polymer-grade terephthalic acid (EPTA) and to produce PET. Eastman claims that the manufacturing cost of its new process is approximately 1/3 lower then conventional technology, and that the new process is fully capable of producing the higher quality solid state grades used in blow molded PET bottles.

The current report will evaluate PET production by Eastman Chemical's IntegRex™ process. The evaluation will be based on an integrated 450 kta production plant capable of producing bottle-grade PET resins starting from para-xylene to produce polymer-grade terephthalic acid. The economics for this process will be compared to a conventional process to produce PET solid-state resins. Other technologies including Zimmer's “Direct to Preform” and Uhde Inventa-Fischer’s “Melt to Resin” (MTR) process will be discussed.
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS (Continued)

Solid-State Polymerization ... 4-10
Degradation Reactions and Other Side-Reactions 4-11

5 EASTMAN CHEMICAL’S TEREPTHALIC ACID PRODUCTION PROCESS 5-1
INTRODUCTION .. 5-1
EASTMAN POLYMER-GRADE TEREPTHALIC ACID (EPTA) PRODUCTION.... 5-1
PROCESS DESCRIPTION .. 5-3
Section 100: p-Xylene Oxidation .. 5-15
Section 200: Catalyst Recovery ... 5-16
PROCESS DISCUSSION ... 5-17
p-Xylene Feed Purity ... 5-17
Reactor Design ... 5-17
Reaction Conditions ... 5-19
Purification .. 5-19
Solid/Liquid Separation Zone ... 5-19
Post-Oxidation Reactor ... 5-20
Crystallization .. 5-20
Filtration and Drying .. 5-20
Solvent Recovery ... 5-20
Catalyst Recovery ... 5-21
Waste Generation ... 5-22
Material of Construction ... 5-23
EPTA Consumption .. 5-23
COST ESTIMATES .. 5-23
Total Fixed Capital ... 5-23
Production Costs .. 5-24
Comparison with Purified Terephthalic Acid by Conventional
Catalytic Air Oxidation Process .. 5-24
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>EASTMAN CHEMICAL'S POLYETHYLENE TEREPHTHALATE PRODUCTION PROCESS</td>
<td>6-1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>6-1</td>
<td></td>
</tr>
<tr>
<td>EASTMAN CHEMICAL POLYETHYLENE TEREPHTHALATE PRODUCTION</td>
<td>6-1</td>
<td></td>
</tr>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>6-4</td>
<td></td>
</tr>
<tr>
<td>Section 100: Esterification</td>
<td>6-14</td>
<td></td>
</tr>
<tr>
<td>Section 200: Polycondensation</td>
<td>5-15</td>
<td></td>
</tr>
<tr>
<td>PROCESS DISCUSSION</td>
<td>6-16</td>
<td></td>
</tr>
<tr>
<td>Reactor Mix and Feed System</td>
<td>6-16</td>
<td></td>
</tr>
<tr>
<td>Reactor Design</td>
<td>6-16</td>
<td></td>
</tr>
<tr>
<td>Reaction Conditions</td>
<td>6-17</td>
<td></td>
</tr>
<tr>
<td>Water Removal Column</td>
<td>6-17</td>
<td></td>
</tr>
<tr>
<td>Crystallization Process</td>
<td>6-18</td>
<td></td>
</tr>
<tr>
<td>Elimination of Solid-State Polymerization Process</td>
<td>6-18</td>
<td></td>
</tr>
<tr>
<td>Waste Generation</td>
<td>6-19</td>
<td></td>
</tr>
<tr>
<td>Material of Construction</td>
<td>6-19</td>
<td></td>
</tr>
<tr>
<td>COST ESTIMATES</td>
<td>6-19</td>
<td></td>
</tr>
<tr>
<td>Total Fixed Capital</td>
<td>6-19</td>
<td></td>
</tr>
<tr>
<td>Production Costs</td>
<td>6-20</td>
<td></td>
</tr>
<tr>
<td>Comparison with Polyethylene Terephthalate Production by a Conventional Process</td>
<td>6-20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EASTMAN CHEMICAL'S INTEGRATED PROCESS TO PRODUCE POLYETHYLENE TEREPHTHALATE</td>
<td>7-1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>7-1</td>
<td></td>
</tr>
<tr>
<td>EASTMAN CHEMICAL'S INTEGREX™ PROCESS</td>
<td>7-1</td>
<td></td>
</tr>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>7-3</td>
<td></td>
</tr>
<tr>
<td>COST ESTIMATES</td>
<td>7-21</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS (Concluded)

Total Fixed Capital ... 7-21
Production Costs .. 7-21
Comparison with Polyethylene Terephthalate Production without TPA Integration... 7-21

8 OTHER TECHNOLOGIES ... 8-1

INTRODUCTION .. 8-1

ZIMMER’S “DIRECT HIGH INTRINSIC VISCOSITY” (DHI) AND “DIRECT TO PREFORM” (DTP) PROCESS ... 8-1

UHDE INVENTA-FISCHER’S “MELT TO RESIN” (MTR) AND “MELT TO PREFORM” (MTP) PROCESSES ... 8-3

M&G’S EASYUP AND FLEXPET TECHNOLOGY .. 8-5

INVISTA’S NG3 PROCESS ... 8-6

UOP SINCO SOLID-STATE POLYMERIZATION PROCESS ... 8-6

OTHER TECHNOLOGIES ... 8-7

APPENDIX A: PATENT SUMMARY TABLES ... A-1

APPENDIX B: DESIGN AND COST BASES ... B-1

APPENDIX C: CITED REFERENCES .. C-1

APPENDIX D: PATENT REFERENCES BY COMPANY ... D-1

APPENDIX E: PROCESS FLOW DIAGRAM ... E-1
ILLUSTRATIONS

3.1 Global PET Melt-Phase Resin Consumption by End Use, 2004 3-2
3.2 United States PET Melt-Phase Resin Consumption by End Use, 2003 3-3
3.3 Regional Capacity for PET Melt-Phase Resin, 2004 .. 3-4
3.4 Regional Capacity for PET Solid-State Resin, 2004 ... 3-5
3.5 Regional Capacity for PET Solid-State Resin, 2007 .. 3-5
4.1 Integrated PET Value Chain .. 4-2
5.1 Block Flow Diagram of EPTA Production ... 5-3
5.2 EPTA Production by Eastman Chemical Process ... E-3
5.3 Bubble Column Reactor .. 5-18
5.4 Internal Deaeration Vessel .. 5-19
6.1 Block Flow Diagram of Conventional PET Production (Zimmer) from PEP Report 18B .. 6-2
6.2 Block Flow Diagram of IntegRex™ PET Production Section 6-3
6.3 PET Production by Eastman Chemical Process .. E-7
6.4 Schematic of the Esterification and Polycondensation Processes 6-17
6.5 Comparison of Estimated Product Values for Eastman Chemical Process and a Conventional Process Based on Different Plant Capacities 6-27
7.1 Block Flow Diagram of Eastman Chemical’s IntegRex™ Process 7-2
7.2 PET Production by Eastman Chemical’s IntegRex™ Process E-11
8.1 Zimmer’s DHI and DTP Processes .. 8-2
8.2 Espree™ Tower Reactor ... 8-4
8.3 Discage™ Horizontal Reactor ... 8-5
8.4 M&G’s EasyUp Process .. 8-6
TABLES

2.1 Top Ten Producers of PET Melt-Phase Resins, 2004 .. 2-2
2.2 Top Ten Producers of PET Solid-State Resins, 2004... 2-2
2.3 Comparison of Terephthalic Acid Cost Estimates for Eastman Chemical Process and a Conventional Process ... 2-5
2.4 Comparison of PET Capital Cost Estimates for Eastman Chemical Process and a Conventional Process ... 2-6
2.5 Comparison of PET Production Cost Estimates for Eastman Chemical Process and a Conventional Process ... 2-6
2.6 Comparison of PET Production Cost Estimates for Eastman Chemical’s IntegRex™ Process and without TPA Integration ... 2-7
2.7 Comparison of Capital Cost Estimates for Eastman Chemical’s IntegRex™ Process and without TPA Integration ... 2-8
3.1 Pet Applications Based on Intrinsic Viscosity .. 3-2
3.2 PET Melt-Phase Resin Capacity Growth Rate for Selected Regions 3-4
3.3 Leading Global Producers of PET Melt-Phase Resins, 2004 3-6
3.4 Leading Global Producers of PET Solid-State Resins, 2004 3-6
3.5 PET Melt-Phase Resin Producers, China (2004) .. 3-7
3.6 PET Melt-Phase Resin Producers, United States (2004) 3-12
3.7 PET Melt-Phase Resin Producers, Western Europe (2004) 3-14
3.8 PET Melt-Phase Resin Producers, Japan (2004) ... 3-17
3.9 PET Solid-State Resin Producers, United States (2004) 3-18
3.10 PET Solid-State Resin Producers, Western Europe (2004) 3-19
3.11 PET Solid-State Resin Producers, Japan (2004) ... 3-20
4.1 Polyethylene Terephthalate Chemistry: PATENT SUMMARY A-3
4.2 Typical Product Specifications for PTA and MTA ... 4-6
5.1 Eastman Chemical’s Terephthalic Acid: PATENT SUMMARY A-12
5.2 EPTA Production by a Process Similar to Eastman Chemical Process: DESIGN BASES AND ASSUMPTIONS ... 5-4
5.3 EPTA Production by a Process Similar to Eastman Chemical Process: STREAM FLOWS ... 5-6
TABLES (Continued)

5.4 EPTA Production by a Process Similar to Eastman Chemical Process:
MAJOR EQUIPMENT... 5-11
5.5 EPTA Production by a Process Similar to Eastman Chemical Process:
UTILITIES SUMMARY .. 5-14
5.6 p-Xylene Feed Specification... 5-17
5.7 Solvent Feed Specification.. 5-21
5.8 Composition of Feed to Catalyst Recovery Section............... 5-22
5.9 Lurgi's EPTA Data .. 5-23
5.10 EPTA Production by a Process Similar to Eastman Chemical Process:
TOTAL CAPITAL INVESTMENT.. 5-26
5.11 EPTA Production by a Process Similar to Eastman Chemical Process:
CAPITAL INVESTMENT BY SECTION .. 5-7
5.12 EPTA Production by a Process Similar to Eastman Chemical Process:
PRODUCTION COSTS... 5-28
5.13 Comparison of Cost Estimates for Eastman Chemical Process and a
Conventional Process.. 5-30
6.1 Eastman Chemical’s Polyethylene Terephthalate: PATENT SUMMARY........ A-18
6.2 PET Production by a Process Similar to Eastman Chemical Process:
DESIGN BASES AND ASSUMPTIONS..................................... 6-5
6.3 PET Production by a Process Similar to Eastman Chemical Process:
STREAM FLOWS... 6-7
6.4 PET Production by a Process Similar to Eastman Chemical Process:
MAJOR EQUIPMENT... 6-10
6.5 PET Production by a Process Similar to Eastman Chemical Process:
UTILITIES SUMMARY .. 6-13
6.6 PET Production by a Process Similar to Eastman Chemical Process:
TOTAL CAPITAL INVESTMENT.. 6-22
6.7 PET Production by a Process Similar to Eastman Chemical Process:
CAPITAL INVESTMENT BY SECTION .. 6-23
6.8 PET Production by a Process Similar to Eastman Chemical Process:
PRODUCTION COSTS... 6-24
6.9 Comparison of Equipment Costs (F.O.B.) for Eastman Chemical Process and a
Conventional Process.. 6-26
TABLES (Concluded)

5.3 EPTA Production by a Process Similar to Eastman Chemical Process:
STREAM FLOWS.. 5-6

6.10 Comparison of Capital Cost Estimates for Eastman Chemical Process and a
Conventional Process.. 6-26

6.11 Comparison of Production Cost Estimates for Eastman Chemical Process
and a Conventional Process ... 6-27

7.1 Polyethylene Terephthalate Production by a Process Similar to Eastman
Chemical's IntegRex™ Process:
DESIGN BASES AND ASSUMPTIONS... 7-4

7.2 Polyethylene Terephthalate Production by a Process Similar to Eastman
Chemical's IntegRex™ Process:
STREAM FLOWS.. 7-7

7.3 Polyethylene Terephthalate Production by a Process Similar to Eastman
Chemical's IntegRex™ Process:
MAJOR EQUIPMENT.. 7-15

7.4 Polyethylene Terephthalate Production by a Process Similar to Eastman
Chemical's IntegRex™ Process:
UTILITIES SUMMARY .. 7-20

7.5 Polyethylene Terephthalate Production by a Process Similar to Eastman
Chemical's IntegRex™ Process:
TOTAL CAPITAL INVESTMENT... 7-23

7.6 Polyethylene Terephthalate Production by a Process Similar to Eastman
Chemical's IntegRex™ Process:
CAPITAL INVESTMENT BY SECTION ... 7-24

7.7 Polyethylene Terephthalate Production by a Process Similar to Eastman
Chemical's IntegRex™ Process:
PRODUCTION COSTS... 7-26

7.8 Comparison of PET Production Cost Estimates for Eastman Chemical's IntegRex
Process and Eastman Chemical Process Without TPA Integration................. 7-28

7.9 Comparison of Capital Cost Estimates for Eastman Chemical's IntegRex™
Process and Eastman Chemical Processes without TPA Integration 7-28

8.1 Other Patents to Improve PET Manufacturing Efficiencies:
PATENT SUMMARY ... A-25