Abstract
Process Economics Program Report 9F
TEREPHTHALIC ACID
(August 2005)

World consumption of terephthalic acid (TPA) has grown at an average annual rate of more than 6%, driven by great demand for textile fibers and PET bottles. Fast population growth, combined with the replacement of cotton as textile raw material, has prompted brisk demand for polyester fibers in China and Southeast Asia. In North America and Europe, TPA demand has been driven mainly by applications in the bottle and container markets, where glass has been largely replaced by lightweight PET bottles.

The core technology for producing TPA has remained the same since the 1960s—crude TPA is produced by bromine-promoted catalytic oxidation of p-xylene, and purified by a hydrogenation step. However, several incremental improvements have been implemented in the TPA process over the years, covering both the main oxidation and the purification sections. In late 2000, BP announced the development of a new-generation TPA process, called “X Technology”. The new technology achieves great process simplification by using innovative methods for water recycling and improved solid-liquid separation techniques. As a result, purified terephthalic acid (PTA) can be produced at significantly lower capital and operating costs.

Another technology that has attracted renewed interest is the production of medium-quality terephthalic acid (MTA). The MTA process uses a post-oxidation system that allows for elimination of the entire purification section of the PTA process. Eastman-Lurgi and Mitsubishi Chemical are the main licensors of this technology. Despite the higher impurity levels in the MTA product when compared to PTA, several MTA producers have marketed their product as compatible with PTA for most polyester applications, including bottle resin, film and fiber.

The focus of this report is a comparative techno-economic evaluation of three processes for TPA production. We developed conceptual designs and preliminary economics for the conventional PTA process, the new-generation PTA technology, and the medium-quality (MTA) process. A discussion of the current status of the TPA industry is also presented, including product derivatives and end-use applications, global and regional supply and demand, producers, and technology licensors. In addition, we examine recent patent applications dealing with several aspects of TPA technology.
Report No. 9F

Terephthalic Acid

by Marcos A. Cesar

September 2005

A private report by the
PROCESS ECONOMICS PROGRAM

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1
 GENERAL ASPECTS ... 2-1
 TECHNICAL ASPECTS .. 2-1
 Purified Terephthalic Acid by Conventional Catalytic Air Oxidation Process 2-2
 Purified Terephthalic Acid by New-Generation Catalytic Air Oxidation Process 2-3
 Medium-Quality Terephthalic Acid Process ... 2-3
 PROCESS ECONOMICS .. 2-4

3 INDUSTRY STATUS .. 3-1
 TPA DERIVATIVES AND END USES .. 3-1
 TPA SUPPLY AND DEMAND .. 3-2
 Asian TPA Outlook .. 3-5
 U.S. TPA Outlook .. 3-5
 Western European TPA Outlook ... 3-6
 Middle Eastern TPA Outlook ... 3-6
 MANUFACTURING PROCESSES AND LICENSORS .. 3-6
 BP (Amoco) Process ... 3-7
 Invista Process (ICI-DuPont) ... 3-8
 Dow-Inca Process .. 3-9
 Other PTA Processes ... 3-9
 Medium-Quality TPA (MTA) ... 3-10
 TPA From DMT ... 3-10
 PRODUCTERS AND PLANT CAPACITIES ... 3-11

4 CHEMICAL REACTIONS AND PRODUCT IMPURITIES ... 4-1
 P-XYLENE OXIDATION .. 4-1
 TPA PURIFICATION ... 4-3
 Purification by Hydrogenation .. 4-3
 Purification by Post-Oxidation ... 4-4
 PRODUCT IMPURITIES AND QUALITY SPECIFICATIONS 4-4
5 REVIEW OF TECHNICAL DEVELOPMENTS ... 5-1
 P-XYLENE OXIDATION AND CTA RECOVERY .. 5-1
 Reaction Conditions ... 5-1
 Reactor Design ... 5-3
 Oxidation Off-gas Treatment and Energy Recovery ... 5-4
 Acetic Acid Dehydration .. 5-5
 Methyl Acetate Recovery .. 5-5
 Solid-Liquid Separation ... 5-6
 TEREPTHALIC ACID PURIFICATION AND RECOVERY 5-7
 Hydrogenation ... 5-7
 Alternative Purification Methods .. 5-8
 Crystallization .. 5-8
 Solid-Liquid Separation ... 5-9
 CATALYST RECOVERY ... 5-10
 MEDIUM QUALITY TEREPTHALIC ACID AND ALTERNATIVE
 REACTION SOLVENTS ... 5-11
 Alternative Reaction Solvents .. 5-12

6 PURIFIED TEREPTHALIC ACID BY THE CONVENTIONAL
 CATALYTIC AIR OXIDATION PROCESS .. 6-1
 PROCESS DESCRIPTION ... 6-1
 Oxidation-Section 100 .. 6-1
 Hydrogenation ... 6-3
 Catalyst Recovery-Section 300 .. 6-4
 PROCESS DISCUSSION ... 6-23
 Oxidation Reaction Conditions .. 6-23
 Reactor Design ... 6-23
 Off-Gas Treatment ... 6-23
 Methyl Acetate Conversion .. 6-23
 Hydrogenation Catalyst .. 6-24
 Postreduction Crystallization .. 6-24
 Catalyst Recovery .. 6-24
 Materials of Construction ... 6-24
 COST ESTIMATES .. 6-25
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS DESCRIPTION</td>
<td>7-1</td>
</tr>
<tr>
<td>Oxidation-Section 100</td>
<td>7-1</td>
</tr>
<tr>
<td>Hydrogenation-Section 200</td>
<td>7-3</td>
</tr>
<tr>
<td>Catalyst Recovery-Section 300</td>
<td>7-4</td>
</tr>
<tr>
<td>PROCESS DISCUSSION</td>
<td>7-19</td>
</tr>
<tr>
<td>Water Separation and Recycle</td>
<td>7-19</td>
</tr>
<tr>
<td>Solid-Liquid Separation of Crude Product</td>
<td>7-19</td>
</tr>
<tr>
<td>Solid-Liquid Separation of Final Product</td>
<td>7-20</td>
</tr>
<tr>
<td>COST ESTIMATES</td>
<td>7-20</td>
</tr>
<tr>
<td>APPENDIX A: PATENT SUMMARY TABLES</td>
<td>A-1</td>
</tr>
<tr>
<td>APPENDIX B: DESIGN AND COST BASES</td>
<td>B-1</td>
</tr>
<tr>
<td>APPENDIX C: CITED REFERENCES</td>
<td>C-1</td>
</tr>
<tr>
<td>APPENDIX D: PATENT REFERENCES BY COMPANY</td>
<td>D-1</td>
</tr>
<tr>
<td>APPENDIX E: PROCESS FLOW DIAGRAM</td>
<td>E-1</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

4.1 Effect of PTA’s 4-CBA Content on Pet Color-b ... 4-6
4.2 Effect of PTA Color-b on PET Color-b ... 4-7
6.1 Purified Terephthalic Acid by the Conventional Catalytic Air Oxidation Process Process Flow Diagram .. E-3
6.2 Purified Terephthalic Acid by the Conventional Catalytic Air Oxidation Process Effect of Plant Capacity on Investment Cost ... 6-28
6.3 Purified Terephthalic Acid by the Conventional Catalytic Air Oxidation Process Effect of P-Xylene Price on Production Cost and Product Value 6-31
6.4 Purified Terephthalic Acid by the Conventional Catalytic Air Oxidation Process Effect of Operating Level and Plant Capacity on Product Value 6-32
7.1 Purified Terephthalic Acid by the New Generation Catalytic Air Oxidation Process Process Flow Diagram .. E-7
7.2 Purified Terephthalic Acid by the New Generation Catalytic Air Oxidation Process Effect of Plant Capacity on Investment Costs ... 7-24
7.3 Purified Terephthalic Acid by the New Generation Catalytic Air Oxidation Process Effect of P-Xylene Price on Production Cost and Product Value 7-27
7.4 Purified Terephthalic Acid by the New Generation Catalytic Air Oxidation Process Effect of Operating Level and Plant Capacity on Product Value 7-28
8.1 Medium Quality Terephthalic Acid Process Process Flow Diagram E-11
TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Terephthalic Acid FOM P-Xylene Comparison of Total Capital Investment</td>
<td>2-5</td>
</tr>
<tr>
<td>2.2</td>
<td>Terephthalic Acid FOM P-Xylene Comparison of Production Costs</td>
<td>2-6</td>
</tr>
<tr>
<td>3.1</td>
<td>Historical and Projected World TPA Capacity, Production and Consumption by Region</td>
<td>3-3</td>
</tr>
<tr>
<td>3.2</td>
<td>Commercial TPA Technologies – Market Share</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3</td>
<td>World Terephthalic Acid Plants</td>
<td>3-11</td>
</tr>
<tr>
<td>4.1</td>
<td>Typical Product Specifications – PTA/MTA</td>
<td>4-5</td>
</tr>
<tr>
<td>5.1</td>
<td>P-Xylene Oxidation and CTA Recovery Patent Summary</td>
<td>A-3</td>
</tr>
<tr>
<td>5.2</td>
<td>Terephthalic Acid Purification and Recovery Patent Summary</td>
<td>A-14</td>
</tr>
<tr>
<td>5.3</td>
<td>Catalyst Recovery and Effluent Treatment Patent Summary</td>
<td>A-20</td>
</tr>
<tr>
<td>5.4</td>
<td>Medium Quality Terephthalic Acid (MTA) and Alternative Reaction Solvents Patent Summary</td>
<td>A-22</td>
</tr>
<tr>
<td>5.5</td>
<td>Typical Ranges for Oxidation Reaction Conditions</td>
<td>5-2</td>
</tr>
<tr>
<td>6.1</td>
<td>Purified Terephthalic Acid by the Conventional Catalytic Air Oxidation Process Design Bases and Assumptions</td>
<td>6-6</td>
</tr>
<tr>
<td>6.2</td>
<td>Purified Terephthalic Acid by the Conventional Catalytic Oxidation Process Stream Flows</td>
<td>6-7</td>
</tr>
<tr>
<td>6.3</td>
<td>Purified Terephthalic Acid by the Conventional Catalytic Oxidation Process Major Equipment</td>
<td>6-18</td>
</tr>
<tr>
<td>6.4</td>
<td>Purified Terephthalic Acid by the Conventional Catalytic Oxidation Process Utilities Summary</td>
<td>6-22</td>
</tr>
<tr>
<td>6.5</td>
<td>Purified Terephthalic Acid by the Conventional Catalytic Air Oxidation Process Total Capital Investment</td>
<td>6-26</td>
</tr>
<tr>
<td>6.6</td>
<td>Purified Terephthalic Acid by the Conventional Catalytic Air Oxidation Process Capital Investment by Section</td>
<td>6-27</td>
</tr>
<tr>
<td>6.7</td>
<td>Purified Terephthalic Acid by the Conventional Catalytic Air Oxidation Process Production Costs</td>
<td>6-29</td>
</tr>
<tr>
<td>7.1</td>
<td>Purified Terephthalic Acid by the New Generation Catalytic Air Oxidation Process Design Bases and Assumptions</td>
<td>7-5</td>
</tr>
<tr>
<td>7.2</td>
<td>Purified Terephthalic Acid by the New Generation Catalytic Air Oxidation Process Stream Flows</td>
<td>7-6</td>
</tr>
<tr>
<td>7.3</td>
<td>Purified Terephthalic Acid by the New Generation Catalytic Air Oxidation Process Major Equipment</td>
<td>7-15</td>
</tr>
</tbody>
</table>
7.4 Purified Terephthalic Acid by the New Generation Catalytic Air Oxidation Process
Utilities Summary... 7-18

7.5 Purified Terephthalic Acid by the New Generation Catalytic Air Oxidation Process
Total Capital Investment.. 7-22

7.6 Purified Terephthalic Acid by the New Generation Catalytic Air Oxidation Process
Capital Investment by Section.. 7-23

7.7 Purified Terephthalic Acid by the New Generation Catalytic Air Oxidation Process
Production Costs ... 7-25