Abstract

Process Economics Program Report 9e
TEREPHTHALIC ACID AND DIMETHYL TEREPTHALATE
(January 1997)

In this study we present designs and economics for industrially important processes for the manufacture of purified terephthalic acid (PTA), purified isophthalic acid (PIA), and dimethyl terephthalate (DMT). Since our last report on this subject in 1990, no new PTA or DMT processes have been commercialized. However, the basic processes have been improved significantly. Although some of the improvements are proprietary, others are illustrated in the patent literature, in some cases as a part of efforts to license a process. As a result, we are able to present new designs and economics for PTA and DMT processes comparable to the ones currently practiced commercially. In a similar vein, we evaluate the economics for a modern PIA facility.

PET resins and fibers do not degrade naturally in the environment at acceptable rates and thus present a litter and disposal problem. To recycle postconsumer PET wastes, industry has significantly expanded PET depolymerization capacity and is exploring ways of adapting processes. We discuss the various methods for depolymerizing PET and evaluate a methanolysis process for depolymerizing PET film waste.

In addition, we review the status of the subject industries, list estimated plant capacities, and discuss the chemistry entailed in the various manufacturing processes. We also discuss patents issued on PTA, DMT, and PET depolymerization since 1990; and on PIA since 1972. This report is of special interest to current and potential producers of PTA and DMT, and to consumers of these chemicals. Process development chemists and catalyst specialists will be interested in the summaries of the recent patents.
CONTENTS

GLOSSARY ... xv

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1
 INDUSTRY STATUS ... 2-1
 TECHNICAL ASPECTS ... 2-2
 Process Summaries .. 2-2
 Terephthalic Acid from p-Xylene by
 Bromine-Promoted Catalytic Air Oxidation ... 2-2
 Dimethyl Terephthalate from p-Xylene by
 Successive Oxidations and Esterifications .. 2-3
 Polyethylene Terephthalate Film Recycle by Methanolysis 2-3
 Isophthalic Acid from m-Xylene by
 Bromine-Promoted Catalytic Air Oxidation ... 2-4
 CAPITAL AND PRODUCTION COSTS ... 2-4

3 INDUSTRY STATUS .. 3-1
 Terephthalic Acid and Dimethyl Terephthalate .. 3-1
 Isophthalic Acid ... 3-2
 Polyethylene Terephthalate Depolymerization ... 3-2
 MARKET AND PRODUCTION DATA ... 3-3
 PRICES .. 3-4

4 CHEMISTRY .. 4-1
 TEREPTHALIC ACID BY OXIDATION OF P-XYLENE 4-1
 DIMETHYL TEREPTHALATE FROM P-XYLENE ... 4-3
 PET DEPOLYMERIZATION BY METHANOLYSIS 4-4
 ISOPHTHALIC ACID BY OXIDATION OF M-XYLENE 4-4

5 TEREPTHALIC ACID FROM P-XYLENE BY
 BROMINE-PROMOTED CATALYTIC AIR OXIDATION 5-1
 PROCESS REVIEW ... 5-1
 p-Xylene Oxidation and Crude Terephthalic Acid Recovery 5-2
 General Process Features ... 5-2
 Catalyst System .. 5-3
 Reaction Temperature and Pressure ... 5-3
 Solvent Concentration .. 5-4
5 TEREPTHALIC ACID FROM P-XYLENE BY BROMINE-PROMOTED CATALYTIC AIR OXIDATION (Concluded)

PROCESS REVIEW (Concluded)

p-Xylene Oxidation and Crude Terephthalic Acid Recovery (Concluded)

General Process Features .. 5-2
Water Concentration and Corrosion 5-4
Reactor Design ... 5-4
Oxygen Partial Pressure .. 5-5
Oxidation Off-Gas Scrubber .. 5-5
Methyl Acetate Recovery .. 5-5
p-Xylene Removal from Oxidation Off-Gas 5-6
Preparation of Crude Terephthalic Acid for Final Purification ... 5-6

Terephthalic Acid Purification and Recovery 5-7
Hydrogenation .. 5-7
Multilayer Hydrogenation Catalysts 5-8
Crystallization and Solid-Liquid Separation 5-8
Catalyst Recovery .. 5-10

PROCESS DESCRIPTION .. 5-11
Oxidation—Section 100 .. 5-13
Hydrogenation—Section 200 ... 5-14
Catalyst Recovery—Section 300 5-16

PROCESS DISCUSSION ... 5-26
Design Basis Patent Selection ... 5-26
Oxidation Reactor and Crystallization 5-26
Separation of Crude TPA Solids 5-27
Acetic Acid Solvent Recovery ... 5-27
Solvent Dehydration Tower .. 5-27
Hydrogenation Reactor .. 5-27
Postreduction Crystallization ... 5-28
Catalyst Recovery .. 5-28
Materials of Construction ... 5-28
Waste Streams ... 5-29

CAPITAL AND PRODUCTION COSTS 5-31
CONTENTS (Continued)

6 DIMETHYL TEREPTHALATE FROM P-XYLENE BY SUCCESSIVE OXIDATIONS AND ESTERIFICATIONS ... 6-1

PROCESS REVIEW .. 6-1

PROCESS DESCRIPTION .. 6-2

Oxidation and Esterification—Section 100 6-3
Crystallization—Section 200 .. 6-5
 First Stage .. 6-5
 Second Stage .. 6-6
 Isomers Removal .. 6-6
Organics Recovery—Section 300 ... 6-6
Catalyst Recovery—Section 400 ... 6-7
Offgas Treatment—Section 500 ... 6-8

PROCESS DISCUSSION ... 6-23

Oxidation and Esterification ... 6-23
Crystallization .. 6-23
Organic Recovery .. 6-24
Catalyst Recovery .. 6-24
Offgas Treatment .. 6-25
Materials of Construction ... 6-25
Waste Streams ... 6-26

CAPITAL AND PRODUCTION COSTS .. 6-26

7 POLYETHYLENE TEREPTHALATE FILM RECYCLE BY METHANOLYSIS .. 7-1

PROCESS REVIEW .. 7-1

Methanolysis .. 7-3
Pretreatment ... 7-3
Methanolysis Reaction .. 7-5
 Catalytic Methanolysis Reactions .. 7-7
Products Recovery .. 7-8
 Vapor-Phase Reactor Product .. 7-8
 Liquid-Phase Reactor Product ... 7-10
Purification of DMT by Distillation and Extraction 7-10
Purification of DMT by Crystallization 7-11
CONTENTS (Continued)

7 POLYETHYLENE TEREPTHALATE FILM RECYCLE BY METHANOLYSIS (Concluded)

PROCESS REVIEW (Concluded)

Neutral Hydrolysis ... 7-11
General Features ... 7-11
Celanese Hydrolysis Process 7-11
Amoco Modifications—Hydrogenation of Hydrolysis Products 7-12
Eastman Chemical Modifications—Purification by Steam Sublimation ... 7-13
Combination of Hydrolysis with Other Technologies 7-14

PROCESS DESCRIPTION ... 7-14
Methanolysis—Section 100 7-16
Purification—Section 200 7-16

PROCESS DISCUSSION .. 7-24
Design Basis Patent Selection 7-24
Catalyst Deaivalut ... 7-24
Methanolysis .. 7-24
Purification .. 7-25
Materials of Construction 7-25
Waste Streams ... 7-26

CAPITAL AND PRODUCTION COSTS 7-26

8 ISOPHTHALIC ACID FROM M-XYLENE BY BROMINE-PROMOTED CATALYTIC AIR OXIDATION 8-1

PROCESS REVIEW ... 8-2
m-Xylene Oxidation and Crude Isophthalic Acid Recovery 8-2
 General Process Features 8-2
 Oxidation Reactor Conditions 8-4
 Solvent Recycle .. 8-5
Isophthalic Acid Purification and Recovery 8-5
 Hydrogenation ... 8-5
 Crystallization and Solid-Liquid Separation 8-6

PROCESS DESCRIPTION ... 8-6
 Oxidation Section 100 8-7
 Hydrogenation—Section 200 8-10
 Catalyst Recovery—Section 300 8-11
ISOPHTHALIC ACID FROM M-XYLENE BY
BROMINE-PROMOTED CATALYTIC AIR OXIDATION (Concluded)

PROCESS DISCUSSION ... 8-22
Design Basis Patent Selection .. 8-22
Oxidation Reactor and Crystallization 8-22
Separation of Crude IPA Solids ... 8-23
Solvent Dehydration Tower .. 8-23
Hydrogenation Reactor .. 8-23
Peroxide Reduction Crystallization 8-24
Materials of Construction ... 8-24
Waste Streams ... 8-24
CAPITAL AND PRODUCTION COSTS 8-26

APPENDIX A: PATENT SUMMARY TABLES A-1
APPENDIX B: DESIGN AND COST BASES B-1
APPENDIX C: CITED REFERENCES .. C-1
APPENDIX D: PATENT REFERENCES BY COMPANY D-1
APPENDIX E: PROCESS FLOW DIAGRAMS E-1
ILLUSTRATIONS

5.1 Terephthalic Acid from p-Xylene by Bromine-Promoted Catalytic Air Oxidation Process Flow Diagram .. E-3

5.2 Terephthalic Acid from p-Xylene by Bromine-Promoted Catalytic Air Oxidation Net Production Cost and Product Value as a Function of p-Xylene Price 5-07

5.3 Terephthalic Acid from p-Xylene by Bromine-Promoted Catalytic Air Oxidation Effect of Operating Level and Plant Capacity on Product Value 5-38

6.1 Dimethyl Terephthalate from p-Xylene by Successive Oxidations and Esterifications Process Flow Diagram .. E-7

6.2 Dimethyl Terephthalate from p-Xylene by Successive Oxidations and Esterifications Net Production Cost and Product Value as a Function of p-Xylene Price 6-34

6.3 Dimethyl Terephthalate from p-Xylene by Successive Oxidations and Esterifications Effect of Operating Level and Plant Capacity on Product Value 6-35

7.1 Polyethylene Terephthalate Film Recycle by Methanolysis 7-4

7.2 Polyethylene Terephthalate Film Recycle by Methanolysis Process Flow Diagram .. E-13

7.3 Polyethylene Terephthalate Film Recycle by Methanolysis Net Production Cost and Product Value as a Function of PET Film Waste Price ... 7-33

7.4 Polyethylene Terephthalate Film Recycle by Methanolysis Effect of Operating Level and Plant Capacity on Product Value 7-34

8.1 Isophthalic Acid from m-Xylene by Bromine-Promoted Catalytic Air Oxidation Process Flow Diagram .. E-15

8.2 Isophthalic Acid from m-Xylene by Bromine-Promoted Catalytic Air Oxidation Net Production Cost and Product Value as a Function of m-Xylene Price 8-32

8.3 Isophthalic Acid from m-Xylene by Bromine-Promoted Catalytic Air Oxidation Effect of Operating Level and Plant Capacity on Product Value 8-33
TABLES

2.1 Summary of Capital and Production Costs .. 26

3.1 Dimethyl Terephthalate and Terephthalic Acid
Plant Capacities in the Americas, Year-End 1990 ... 36

3.2 Dimethyl Terephthalate and Terephthalic Acid
Plant Capacities in Western Europe, Year-End 1996 36

3.3 Dimethyl Terephthalate and Terephthalic Acid
Plant Capacities in Eastern Europe, Year-End 1990 37

3.4 Dimethyl Terephthalate and Terephthalic Acid
Plant Capacities in the Far East, Year-End 1996 .. 38

3.5 Dimethyl Terephthalate and Terephthalic Acid
Plant Capacities in the Middle East, Year-End 1996 310

3.6 Purified Isophthalic Acid
Plant Capacities, Year-End 1996 ... 311

3.7 PET Depolymerization
Plant Capacities, Year-End 1996 ... 312

5.1 Terephthalic Acid from p-Xylene by
Bromine-Promoted Catalytic Air Oxidation:
p-Xylene Oxidation and Crude TPA Recovery
Patent Summary .. A3

5.2 Terephthalic Acid from p-Xylene by
Bromine-Promoted Catalytic Air Oxidation:
Terephthalic Acid Purification and Recovery
Patent Summary ... A17

5.3 Terephthalic Acid from p-Xylene by
Bromine-Promoted Catalytic Air Oxidation:
Catalyst Recovery
Patent Summary ... A26

5.4 Terephthalic Acid from p-Xylene by
Bromine-Promoted Catalytic Air Oxidation
Design Basis and Assumptions ... 512

5.5 Terephthalic Acid from p-Xylene by
Bromine-Promoted Catalytic Air Oxidation
Major Equipment ... 517
TABLES (Continued)

5.6 Terephthalic Acid from p-Xylene by Bromine-Promoted Catalytic Air Oxidation Utilities Summary .. 5-21

5.7 Terephthalic Acid from p-Xylene by Bromine-Promoted Catalytic Air Oxidation Stream Flows ... 5-22

5.8 Terephthalic Acid from p-Xylene by Bromine-Promoted Catalytic Air Oxidation Waste Streams Summary 5-30

5.9 Terephthalic Acid from p-Xylene by Bromine-Promoted Catalytic Air Oxidation Total Capital Investment 5-32

5.10 Terephthalic Acid from p-Xylene by Bromine-Promoted Catalytic Air Oxidation Capital Investment by Section 5-33

5.11 Terephthalic Acid from p-Xylene by Bromine-Promoted Catalytic Air Oxidation Production Costs .. 5-34

5.12 Terephthalic Acid from p-Xylene by Bromine-Promoted Catalytic Air Oxidation Direct Costs by Section 5-36

6.1 Dimethyl Terephthalate from p-Xylene by Successive Oxidations and Esterifications Patent Summary A-30

6.2 Dimethyl Terephthalate from p-Xylene by Successive Oxidations and Esterifications Design Basis and Assumptions 6-4

6.3 Dimethyl Terephthalate from p-Xylene by Successive Oxidations and Esterifications Major Equipment .. 6-10

6.4 Dimethyl Terephthalate from p-Xylene by Successive Oxidations and Esterifications Utilities Summary 6-14

6.5 Dimethyl Terephthalate from p-Xylene by Successive Oxidations and Esterifications Stream Flows .. 6-15
TABLES (Continued)

6.6 Dimethyl Terephthalate from p-Xylene by Successive Oxidations and Esterifications
Total Capital Investment ... 6-28

6.7 Dimethyl Terephthalate from p-Xylene by Successive Oxidations and Esterifications
Capital Investment by Section .. 6-29

6.8 Dimethyl Terephthalate from p-Xylene by Successive Oxidations and Esterifications
Production Costs ... 6-31

6.9 Dimethyl Terephthalate from p-Xylene by Successive Oxidations and Esterifications
Direct Costs by Section ... 6-33

7.1 Polyethylene Terephthalate Recycle Patent Summary ... A-34

7.2 Polyethylene Terephthalate Film Recycle by Methanolysis
Design Basis and Assumptions ... 7-15

7.3 Polyethylene Terephthalate Film Recycle by Methanolysis
Major Equipment .. 7-18

7.4 Polyethylene Terephthalate Film Recycle by Methanolysis
Utilities Summary .. 7-21

7.5 Polyethylene Terephthalate Film Recycle by Methanolysis
Stream Flows .. 7-22

7.6 Polyethylene Terephthalate Film Recycle by Methanolysis
Total Capital Investment .. 7-28

7.7 Polyethylene Terephthalate Film Recycle by Methanolysis
Capital Investment by Section ... 7-29

7.8 Polyethylene Terephthalate Film Recycle by Methanolysis
Production Costs .. 7-30

7.9 Polyethylene Terephthalate Film Recycle by Methanolysis
Direct Costs by Section ... 7-32

8.1 Isophthalic Acid from m-Xylene by Bromine-Promoted Catalytic Air Oxidation
Patent Summary .. A-47
TABLES (Concluded)

8.2 Isophthalic Acid from m-Xylene by
Bromine-Promoted Catalytic Air Oxidation
Design Basis and Assumptions .. 8-8

8.3 Isophthalic Acid from m-Xylene by
Bromine-Promoted Catalytic Air Oxidation
Major Equipment .. 8-13

8.4 Isophthalic Acid from m-Xylene by
Bromine-Promoted Catalytic Air Oxidation
Utilities Summary .. 8-17

8.5 Isophthalic Acid from m-Xylene by
Bromine-Promoted Catalytic Air Oxidation
Stream Flows .. 8-18

8.6 Isophthalic Acid from m-Xylene by
Bromine-Promoted Catalytic Air Oxidation
Waste Streams Summary .. 8-25

8.7 Isophthalic Acid from m-Xylene by
Bromine-Promoted Catalytic Air Oxidation
Total Capital Investment ... 8-27

8.8 Isophthalic Acid from m-Xylene by
Bromine-Promoted Catalytic Air Oxidation
Capital Investment by Section .. 8-28

8.9 Isophthalic Acid from m-Xylene by
Bromine-Promoted Catalytic Air Oxidation
Production Costs .. 8-29

8.10 Isophthalic Acid from m-Xylene by
Bromine-Promoted Catalytic Air Oxidation
Direct Costs by Section .. 8-31