Abstract

Process Economics Program Report 5D
Vinyl Chloride
(March 2000)

This supplemental report presents the status of the ethylene dichloride/vinyl chloride industry, reviews recent developments in ethylene dichloride and vinyl chloride manufacturing technologies, and evaluates major commercial and potentially commercial processes. Technoeconomic evaluations are presented for ethylene-based ethylene dichloride and vinyl chloride processes based on our interpretation of those licensed by Oxy Vinlys (a joint venture of Oxychem and Geon), Inovyl (a subsidiary of European Vinyls Corporation), Mitsui Chemicals, and Vinnolit (a joint venture of Hoechst and Wacker Chemie).

In the ethylene-based route, vinyl chloride is manufactured by the pyrolysis of ethylene dichloride. Ethylene dichloride is in turn produced by direct chlorination or oxychlorination of ethylene. For direct chlorination, we evaluate and compare liquid-phase high-temperature and low-temperature chlorination processes as well as a gas-phase process. For oxychlorination, we evaluate and compare oxygen-based and air-based processes using fluidized-bed or fixed-bed reactors. For ethylene dichloride pyrolysis, we evaluate and compare various heat-integration schemes used by different licensors. Furthermore, we present technoeconomic evaluations of our interpretation of major balanced processes with and without heat and hydrogen chloride recovery.

We also review ethane-based technologies for vinyl chloride production, evaluate Inovyl’s ethane-to-vinyl chloride process, and compare that with the ethylene-based process. The ethane-based process is economically competitive against the ethylene-based route but could be limited to locations with abundant ethane.

In addition, we update the economics of the acetylene-based process and review other processes for ethylene dichloride/vinyl chloride production.

Overall, this report encompasses the latest technologies and process economics, and it provides a basis for insight into technology trends, the selection of technologies, and possible improvements in profit margins with new technology.
CONTENTS

GLOSSARY ... xx

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1

 GENERAL ASPECTS ... 2-1

 TECHNICAL AND ECONOMIC ASPECTS ... 2-1

 Acetylene-Based Technology .. 2-2

 Ethylene-Based Technology .. 2-2

 Ethylene Dichloride by Direct Chlorination ... 2-2

 Ethylene Dichloride by Oxychlorination ... 2-6

 Vinyl Chloride from Ethylene Dichloride by Pyrolysis ... 2-10

 Vinyl Chloride by a Balanced Process .. 2-13

 Ethane-Based Technology ... 2-18

 Other Processes ... 2-19

 Comparison of Acetylene-Based, Ethylene-Based, and Ethane-Based Processes 2-19

3 INDUSTRY STATUS ... 3-1

 CAPACITY, PRODUCTION, AND CONSUMPTION .. 3-1

 United States .. 3-2

 Western Europe ... 3-2

 Asia ... 3-2

 Middle East ... 3-2

 SOURCES AND USES OF VINYL CHLORIDE .. 3-3

 MANUFACTURING PROCESSES AND TECHNOLOGY DEVELOPMENTS .. 3-3

 Acetylene-Based Technology ... 3-3

 Ethylene-Based Technology ... 3-3

 Ethane-Based Technology .. 3-4

 SAFETY, HEALTH, AND ENVIRONMENTAL ISSUES ... 3-4
4 ETHYLENE DICHLORIDE BY DIRECT CHLORINATION OF ETHYLENE 4-1

CHEMISTRY ... 4-1

PROCESS REVIEW .. 4-2

Catalysts .. 4-2

Reactor Feed ... 4-3

Reactors ... 4-3

Reaction Medium .. 4-4

Product Recovery ... 4-4

ETHYLENE DICHLORIDE BY DIRECT CHLORINATION:
LIQUID-PHASE HTC PROCESS (OXY VINYLIS) ... 4-6

Process Description ... 4-6

Process Discussion ... 4-6

Cost Estimates ... 4-11

ETHYLENE DICHLORIDE BY DIRECT CHLORINATION:
LIQUID-PHASE HTC PROCESS (INOVYL) ... 4-16

Process Description ... 4-16

Process Discussion ... 4-16

Cost Estimates ... 4-21

ETHYLENE DICHLORIDE BY DIRECT CHLORINATION:
LIQUID-PHASE HTC PROCESS (MITSUI) ... 4-26

Process Description ... 4-26

Process Discussion ... 4-26

Cost Estimates ... 4-31

ETHYLENE DICHLORIDE BY DIRECT CHLORINATION:
LIQUID-PHASE LTC PROCESS (VINNOLIT) ... 4-36

Process Description ... 4-36

Process Discussion ... 4-36

Cost Estimates ... 4-41
CONTENTS (Continued)

4 ETHYLENE DICHLORIDE BY DIRECT CHLORINATION OF ETHYLENE (Concluded)

ETHYLENE DICHLORIDE BY DIRECT CHLORINATION:
GAS-PHASE PROCESS (ICI) ... 4-46

Process Description .. 4-46
Process Discussion .. 4-46
Cost Estimates .. 4-53

COMPARISON OF DIRECT CHLORINATION PROCESSES 4-58

5 ETHYLENE DICHLORIDE BY OXYCHLORINATION OF ETHYLENE 5-1

CHEMISTRY ... 5-1

PROCESS REVIEW .. 5-2
Catalysts .. 5-2
Reactor Feed ... 5-2
Oxygen vs. Air .. 5-3
Reactors ... 5-3
Reaction Parameters .. 5-4
Product Recovery .. 5-4

ETHYLENE DICHLORIDE BY OXYCHLORINATION:
FLUIDIZED-BED REACTOR, OXYGEN-BASED (OXY VINYS) 5-6

Process Description .. 5-6
Section 100—Oxychlorination ... 5-6
Section 200—Separation ... 5-6

Process Discussion .. 5-7
Cost Estimates .. 5-15

ETHYLENE DICHLORIDE BY OXYCHLORINATION:
FLUIDIZED-BED REACTOR, AIR-BASED (OXY VINYS) 5-21

Process Description .. 5-21
Cost Estimates .. 5-21
CONTENTS (Continued)

5 ETHYLENE DICHLORIDE BY OXYCHLORINATION OF ETHYLENE (Concluded)

ETHYLENE DICHLORIDE BY OXYCHLORINATION:
FIXED-BED REACTOR, OXYGEN-BASED (INOYIK) ... 5-24

Process Description ... 5-24
 Section 100—Oxychlorination ... 5-24
 Section 200—Separation .. 5-25

Process Discussion ... 5-25

Cost Estimates .. 5-35

ETHYLENE DICHLORIDE BY OXYCHLORINATION:
FIXED-BED REACTOR, AIR-BASED (INOYIK) ... 5-41

Process Description ... 5-41

Cost Estimates .. 5-41

ETHYLENE DICHLORIDE BY OXYCHLORINATION:
FLUIDIZED-BED REACTOR, OXYGEN-BASED (MITSUI) .. 5-45

Process Description ... 5-45

Process Discussion ... 5-45

Cost Estimates .. 5-45

ETHYLENE DICHLORIDE BY OXYCHLORINATION:
FLUIDIZED-BED REACTOR, OXYGEN-BASED (VINNOLIT) 5-49

Process Description ... 5-49

Process Discussion ... 5-49

Cost Estimates .. 5-49

COMPARISON OF OXYCHLORINATION PROCESSES ... 5-50

6 VINYL CHLORIDE FROM ETHYLENE DICHLORIDE BY PYROLYSIS 6-1

CHEMISTRY .. 6-1

PROCESS REVIEW ... 6-2

Feeds ... 6-2

Reactors ... 6-3
CONTENTS (Continued)

6 VINYL CHLORIDE FROM ETHYLENE DICHLORIDE BY PYROLYSIS (Concluded)
 Heat Recovery..6-3
 Separation..6-3
 Purification of VCM...6-3
 Purification of EDC...6-4
 Hydrogen Chloride ...6-4

 VINYL CHLORIDE FROM ETHYLENE DICHLORIDE
 BY PYROLYSIS (GENERIC) ...6-5
 Process Description ...6-5
 Process Discussion ..6-5
 Cost Estimates ...6-13

 VINYL CHLORIDE FROM ETHYLENE DICHLORIDE
 BY PYROLYSIS (OXY VINYLS) ..6-19

 VINYL CHLORIDE FROM ETHYLENE DICHLORIDE
 BY PYROLYSIS (INOVYL) ..6-20

 VINYL CHLORIDE FROM ETHYLENE DICHLORIDE
 BY PYROLYSIS (MITSUI) ...6-24

 VINYL CHLORIDE FROM ETHYLENE DICHLORIDE
 BY PYROLYSIS (VINNOLIT) ...6-28

 COMPARISON OF ETHYLENE DICHLORIDE PYROLYSIS PROCESSES.............6-32

7 VINYL CHLORIDE BY A BALANCED PROCESS...7-1

 VINYL CHLORIDE BY A BALANCED PROCESS (OXY VINYLS)7-1
 Process Description ...7-1
 Section 100—Direct Chlorination ..7-2
 Section 200—Oxychlorination ...7-2
 Section 300—EDC Separation ...7-2
 Section 400—EDC Pyrolysis ..7-3
 Cost Estimates ...7-13
CONTENTS (Continued)

7 VINYL CHLORIDE BY A BALANCED PROCESS (Continued)

VINYL CHLORIDE BY A BALANCED PROCESS
WITH HEAT AND HCL RECOVERY (OXY VINYLS) .. 7-20

Process Discussion .. 7-20

Cost Estimates ... 7-20

VINYL CHLORIDE BY A BALANCED PROCESS (INOVYL) 7-23

Process Discussion .. 7-23

Cost Estimates ... 7-30

VINYL CHLORIDE BY A BALANCED PROCESS
WITH HEAT AND HCl RECOVERY (INOVYL) .. 7-37

Process Discussion .. 7-37

Cost Estimates ... 7-37

VINYL CHLORIDE BY A BALANCED PROCESS (MITSUI) 7-40

Process Discussion .. 7-40

Cost Estimates ... 7-43

VINYL CHLORIDE BY A BALANCED PROCESS
WITH HEAT AND HCl RECOVERY (MITSUI) .. 7-46

Process Discussion .. 7-46

Cost Estimates ... 7-46

VINYL CHLORIDE BY A BALANCED PROCESS (VINNOLIT) 7-49

Process Discussion .. 7-49

成本 Estimates ... 7-49
CONTENTS (Continued)

7 VINYL CHLORIDE BY A BALANCED PROCESS (Concluded)
 Section 200—Oxychlorination ... 7-49
 Section 300—EDC Separation ... 7-49
 Section 400—EDC Pyrolysis ... 7-50
 Cost Estimates .. 7-52

VINYL CHLORIDE BY A BALANCED PROCESS
WITH HEAT AND HCl RECOVERY (VINNOLIT) .. 7-55
 Process Discussion .. 7-55
 Cost Estimates .. 7-55

COMPARISON OF BALANCED PROCESSES .. 7-58

8 VINYL CHLORIDE FROM ETHANE .. 8-1
 PROCESS REVIEW .. 8-2
 The Lummus Process ... 8-2
 The B.F. Goodrich Process ... 8-2
 The Inovyl Process .. 8-2
 Oxychlorination .. 8-2
 Chlorination ... 8-4
 Hydrogenation ... 8-4
 PROCESS DESCRIPTION .. 8-4
 Section 100—Oxychlorination .. 8-4
 Section 200—Separation ... 8-5
 Section 300—Direct Chlorination .. 8-5
 Section 400—Hydrogenation .. 8-5
 PROCESS DISCUSSION .. 8-15
 COST ESTIMATES .. 8-15

COMPARISON OF ETHANE-BASED AND ETHYLENE-BASED PROCESSES ... 8-22
9 VINYL CHLORIDE AND ETHYLENE DICHLORIDE BY OTHER PROCESSES...........9-1
VINYL CHLORIDE FROM ACETYLENE BY HYDROCHLORINATION9-1
VINYL CHLORIDE FROM ETHYLENE
BY THE KELLOGG/MONSANTO PROCESS..9-5
VINYL CHLORIDE FROM ETHYLENE BY CHLORINATION USING
PERCHLOROETHYLENE OR CARBON TETRACHLORIDE ..9-7
VINYL CHLORIDE FROM METHYL CHLORIDE ...9-9
VINYL CHLORIDE FROM ETHYL CHLORIDE ..9-9
ETHYLENE DICHLORIDE FROM ETHYLENE
BY OXYCHLORINATION USING CARBON TETRACHLORIDE9-9
ETHYLENE DICHLORIDE FROM ETHYL CHLORIDE ..9-10

APPENDIX A: PATENT SUMMARY TABLES..A-1
APPENDIX B: DESIGN AND COST BASES...B-1
APPENDIX C: PHYSICAL DATA...C-1
APPENDIX D: CITED REFERENCES..D-1
APPENDIX E: PATENT REFERENCES BY COMPANY ..E-1
APPENDIX F: PROCESS FLOW DIAGRAMS...F-1
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Historical Prices of Ethylene Dichloride and Vinyl Chloride</td>
</tr>
<tr>
<td>4.1</td>
<td>Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Oxy Vinyls) Process Flow Diagram</td>
</tr>
<tr>
<td>4.2</td>
<td>Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Oxy Vinyls) Effect of Operating Level and Plant Capacity on Product Value</td>
</tr>
<tr>
<td>4.3</td>
<td>Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Inovyl) Process Flow Diagram</td>
</tr>
<tr>
<td>4.4</td>
<td>Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Inovyl) Effect of Operating Level and Plant Capacity on Product Value</td>
</tr>
<tr>
<td>4.5</td>
<td>Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Mitsui) Process Flow Diagram</td>
</tr>
<tr>
<td>4.6</td>
<td>Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Mitsui) Effect of Operating Level and Plant Capacity on Product Value</td>
</tr>
<tr>
<td>4.7</td>
<td>Ethylene Dichloride by Direct Chlorination: Liquid-Phase LTC Process (Vinnolit) Process Flow Diagram</td>
</tr>
<tr>
<td>4.8</td>
<td>Ethylene Dichloride by Direct Chlorination: Liquid-Phase LTC Process (Vinnolit) Effect of Operating Level and Plant Capacity on Product Value</td>
</tr>
<tr>
<td>4.9</td>
<td>Ethylene Dichloride by Direct Chlorination: Gas-Phase Process (ICI) Process Flow Diagram</td>
</tr>
<tr>
<td>4.10</td>
<td>Ethylene Dichloride by Direct Chlorination: Gas-Phase Process (ICI) Effect of Operating Level and Plant Capacity on Product Value</td>
</tr>
<tr>
<td>5.1</td>
<td>Ethylene Dichloride by Oxychlorination: Fluidized-Bed Reactor, Oxygen-Based (Oxy Vinyls) Process Flow Diagram</td>
</tr>
<tr>
<td>5.2</td>
<td>Ethylene Dichloride by Oxychlorination: Fluidized-Bed Reactor, Oxygen-Based (Oxy Vinyls) Effect of Operating Level and Plant Capacity on Product Value</td>
</tr>
<tr>
<td>5.3</td>
<td>Ethylene Dichloride by Oxychlorination: Fluidized-Bed Reactor, Oxygen-Based (Inovyl) Process Flow Diagram</td>
</tr>
<tr>
<td>5.4</td>
<td>Ethylene Dichloride by Oxychlorination: Fixed-Bed Reactor, Oxygen-Based (Inovyl) Effect of Operating Level and Plant Capacity on Product Value</td>
</tr>
<tr>
<td>6.1</td>
<td>Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Generic) Process Flow Diagram</td>
</tr>
</tbody>
</table>
TABLES

2.1 Comparison of Ethylene Dichloride by Direct Chlorination Processes ... 2-5
2.2 Comparison of Ethylene Dichloride by Oxygen-Based Oxychlorination Processes 2-9
2.3 Comparison of Vinyl Chloride from Ethylene Dichloride by Pyrolysis Processes 2-12
2.4 Comparison of Vinyl Chloride by Balanced Processes Without Heat and HCl Recovery 2-16
2.5 Comparison of Vinyl Chloride by Balanced Processes with Heat and HCl Recovery 2-17
2.6 Comparison of Acetylene-Based, Ethylene-Based, and Ethane-Based Processes 2-20
3.1 Historical and Projected World Ethylene Dichloride Capacity, Production, and Consumption, by Region .. 3-6
3.2 Historical and Projected World Vinyl Chloride Capacity, Production, and Consumption, by Region 3-7
3.3 Year-End Capacities of Ethylene Dichloride and Vinyl Chloride Plants Worldwide 3-8
4.1 Ethylene Dichloride by Direct Chlorination Patent Summary ... A-3
4.2 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Oxy Vinlys) Design Bases and Assumptions .. 4-7
4.3 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Oxy Vinlys) Stream Flows .. 4-8
4.4 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Oxy Vinlys) Major Equipment .. 4-9
4.5 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Oxy Vinlys) Utilities Summary .. 4-10
4.6 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Oxy Vinlys) Capital Investment .. 4-12
4.7 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Oxy Vinlys) Production Costs .. 4-13
TABLES (Continued)

4.8 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Inovyl) Design Bases and Assumptions ... 4-17

4.9 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Inovyl) Stream Flows .. 4-18

4.10 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Inovyl) Major Equipment ... 4-19

4.11 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Inovyl) Utilities Summary ... 4-20

4.12 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Inovyl) Capital Investment .. 4-22

4.13 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Inovyl) Production Costs .. 4-23

4.14 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Mitsui) Design Bases and Assumptions ... 4-27

4.15 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Mitsui) Stream Flows .. 4-28

4.16 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Mitsui) Major Equipment .. 4-29

4.17 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Mitsui) Utilities Summary ... 4-30

4.18 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Mitsui) Capital Investment .. 4-32

4.19 Ethylene Dichloride by Direct Chlorination: Liquid-Phase HTC Process (Mitsui) Production Costs .. 4-33

4.20 Ethylene Dichloride by Direct Chlorination: Liquid-Phase LTC Process (Vinnolit) Design Bases and Assumptions ... 4-37

4.21 Ethylene Dichloride by Direct Chlorination: Liquid-Phase LTC Process (Vinnolit) Stream Flows .. 4-38

4.22 Ethylene Dichloride by Direct Chlorination: Liquid-Phase LTC Process (Vinnolit) Major Equipment .. 4-39

4.23 Ethylene Dichloride by Direct Chlorination: Liquid-Phase LTC Process (Vinnolit) Utilities Summary ... 4-40

4.24 Ethylene Dichloride by Direct Chlorination: Liquid-Phase LTC Process (Vinnolit) Capital Investment .. 4-42

4.25 Ethylene Dichloride by Direct Chlorination: Liquid-Phase LTC Process (Vinnolit) Production Costs .. 4-43
<table>
<thead>
<tr>
<th>Number</th>
<th>Process Description</th>
<th>Page</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.26</td>
<td>Ethylene Dichloride by Direct Chlorination: Gas-Phase Process (ICI)</td>
<td>4-48</td>
<td></td>
</tr>
<tr>
<td>4.27</td>
<td>Ethylene Dichloride by Direct Chlorination: Gas-Phase Process (ICI) Stream Flows</td>
<td>4-49</td>
<td></td>
</tr>
<tr>
<td>4.28</td>
<td>Ethylene Dichloride by Direct Chlorination: Gas-Phase Process (ICI) Major Equipment</td>
<td>4-50</td>
<td></td>
</tr>
<tr>
<td>4.29</td>
<td>Ethylene Dichloride by Direct Chlorination: Gas-Phase Process (ICI) Utilities Summary</td>
<td>4-52</td>
<td></td>
</tr>
<tr>
<td>4.30</td>
<td>Ethylene Dichloride by Direct Chlorination: Gas-Phase Process (ICI) Capital Investment</td>
<td>4-54</td>
<td></td>
</tr>
<tr>
<td>4.31</td>
<td>Ethylene Dichloride by Direct Chlorination: Gas-Phase Process (ICI) Production Costs</td>
<td>4-55</td>
<td></td>
</tr>
<tr>
<td>4.32</td>
<td>Ethylene Dichloride by Direct Chlorination: Comparison of Processes</td>
<td>4-59</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Ethylene Dichloride by Oxychlorination Patent Summary</td>
<td>A-7</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Ethylene Dichloride by Oxychlorination: Fluidized-Bed Reactor, Oxygen-Based (Oxy Vinyls) Design Bases and Assumptions</td>
<td>5-8</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Ethylene Dichloride by Oxychlorination: Fluidized-Bed Reactor, Oxygen-Based (Oxy Vinyls) Stream Flows</td>
<td>5-9</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Ethylene Dichloride by Oxychlorination: Fluidized-Bed Reactor, Oxygen-Based (Oxy Vinyls) Major Equipment</td>
<td>5-12</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Ethylene Dichloride by Oxychlorination: Fluidized-Bed Reactor, Oxygen-Based (Oxy Vinyls) Utilities Summary</td>
<td>5-14</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Ethylene Dichloride by Oxychlorination: Fluidized-Bed Reactor, Oxygen-Based (Oxy Vinyls) Capital Investment</td>
<td>5-16</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Ethylene Dichloride by Oxychlorination: Fluidized-Bed Reactor, Oxygen-Based (Oxy Vinyls) Capital Investment by Section</td>
<td>5-17</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>Ethylene Dichloride by Oxychlorination: Fluidized-Bed Reactor, Oxygen-Based (Oxy Vinyls) Production Costs</td>
<td>5-18</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>Ethylene Dichloride by Oxychlorination: Fluidized-Bed Reactor, Air-Based (Oxy Vinyls) Production Costs</td>
<td>5-22</td>
<td></td>
</tr>
</tbody>
</table>
TABLES (Continued)

5.10 Ethylene Dichloride by Oxychlorination:
Fixed-Bed Reactor, Oxygen-Based (Inovyl)
Design Bases and Assumptions...5-27

5.11 Ethylene Dichloride by Oxychlorination:
Fixed-Bed Reactor, Oxygen-Based (Inovyl)
Stream Flows ...5-28

5.12 Ethylene Dichloride by Oxychlorination:
Fixed-Bed Reactor, Oxygen-Based (Inovyl)
Major Equipment ..5-32

5.13 Ethylene Dichloride by Oxychlorination:
Fixed-Bed Reactor, Oxygen-Based (Inovyl)
Utilities Summary ..5-34

5.14 Ethylene Dichloride by Oxychlorination:
Fixed-Bed Reactor, Oxygen-Based (Inovyl)
Capital Investment ...5-36

5.15 Ethylene Dichloride by Oxychlorination:
Fixed-Bed Reactor, Oxygen-Based (Inovyl)
Capital Investment by Section...5-37

5.16 Ethylene Dichloride by Oxychlorination:
Fixed-Bed Reactor, Oxygen-Based (Inovyl)
Production Costs ..5-38

5.17 Ethylene Dichloride by Oxychlorination:
Fixed-Bed Reactor, Air-Based (Inovyl)
Production Costs ..5-43

5.18 Ethylene Dichloride by Oxychlorination:
Fluidized-Bed Reactor, Oxygen-Based (Mitsui)
Design Bases and Assumptions...5-46

5.19 Ethylene Dichloride by Oxychlorination:
Fluidized-Bed Reactor, Oxygen-Based (Mitsui)
Production Costs...5-47

5.20 Ethylene Dichloride by Oxychlorination: Oxygen-Based
Comparison of Processes..5-51

6.1 Vinyl Chloride from Ethylene Dichloride by Pyrolysis
Patent Summary ..A-11

6.2 Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Generic)
Design Bases and Assumptions...6-7

6.3 Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Generic)
Stream Flows ..6-8
6.4 Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Generic)
Major Equipment ... 6-10
6.5 Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Generic)
Utilities Summary .. 6-12
6.6 Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Generic)
Capital Investment .. 6-14
6.7 Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Generic)
Production Costs... 6-15
6.8 Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Inovyl)
Capital Investment .. 6-21
6.9 Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Inovyl)
Production Costs... 6-22
6.10 Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Mitsui)
Capital Investment .. 6-25
6.11 Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Mitsui)
Production Costs... 6-26
6.12 Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Vinnolit)
Capital Investment .. 6-29
6.13 Vinyl Chloride from Ethylene Dichloride by Pyrolysis (Vinnolit)
Production Costs... 6-30
6.14 Vinyl Chloride from Ethylene Dichloride by Pyrolysis
Comparison of Processes ... 6-33
7.1 Vinyl Chloride by a Balanced Process (Oxy Vinils)
Design Bases and Assumptions ... 7-4
7.2 Vinyl Chloride by a Balanced Process (Oxy Vinils)
Stream Flows ... 7-5
7.3 Vinyl Chloride by a Balanced Process (Oxy Vinils)
Major Equipment ... 7-10
7.4 Vinyl Chloride by a Balanced Process (Oxy Vinils)
Utilities Summary ... 7-12
7.5 Vinyl Chloride by a Balanced Process (Oxy Vinils)
Capital Investment ... 7-14
7.6 Vinyl Chloride by a Balanced Process (Oxy Vinils)
Capital Investment by Section ... 7-15
7.7 Vinyl Chloride by a Balanced Process (Oxy Vinils)
Production Costs.. 7-17
TABLES (Continued)

7.8 Vinyl Chloride by a Balanced Process with Heat and HCl Recovery (Oxy Vinyls)
 Production Costs...7-21

7.9 Vinyl Chloride by a Balanced Process (Inovyl)
 Design Bases and Assumptions..7-25

7.10 Vinyl Chloride by a Balanced Process (Inovyl)
 Major Equipment...7-26

7.11 Vinyl Chloride by a Balanced Process (Inovyl)
 Utilities Summary...7-29

7.12 Vinyl Chloride by a Balanced Process (Inovyl)
 Capital Investment..7-31

7.13 Vinyl Chloride by a Balanced Process (Inovyl)
 Capital Investment by Section...7-32

7.14 Vinyl Chloride by a Balanced Process (Inovyl)
 Production Costs...7-34

7.15 Vinyl Chloride by a Balanced Process with Heat and HCl Recovery (Inovyl)
 Production Costs...7-38

7.16 Vinyl Chloride by a Balanced Process (Mitsui)
 Design Bases and Assumptions..7-42

7.17 Vinyl Chloride by a Balanced Process (Mitsui)
 Production Costs...7-44

7.18 Vinyl Chloride by a Balanced Process with Heat and HCl Recovery (Mitsui)
 Production Costs...7-47

7.19 Vinyl Chloride by a Balanced Process (Vinnolit)
 Design Bases and Assumptions..7-51

7.20 Vinyl Chloride by a Balanced Process (Vinnolit)
 Production Costs...7-53

7.21 Vinyl Chloride by a Balanced Process with Heat and HCl Recovery (Vinnolit)
 Production Costs...7-56

7.22 Vinyl Chloride by a Balanced Process
 Comparison of Processes..7-59

7.23 Vinyl Chloride by a Balanced Process with Heat and HCl Recovery
 Comparison of Processes..7-60

8.1 Vinyl Chloride from Ethane
 Patent Summary ...A-14

8.2 Vinyl Chloride from Ethane by the Inovyl Process
 Design Bases and Assumptions...8-7
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Vinyl Chloride from Ethane by the Inovyl Process Stream Flows</td>
<td>8-8</td>
</tr>
<tr>
<td>8.4</td>
<td>Vinyl Chloride from Ethane by the Inovyl Process Major Equipment</td>
<td>8-12</td>
</tr>
<tr>
<td>8.5</td>
<td>Vinyl Chloride from Ethane by the Inovyl Process Utilities Summary</td>
<td>8-14</td>
</tr>
<tr>
<td>8.6</td>
<td>Vinyl Chloride from Ethane by the Inovyl Process Capital Investment</td>
<td>8-16</td>
</tr>
<tr>
<td>8.7</td>
<td>Vinyl Chloride from Ethane by the Inovyl Process Capital Investment by Section</td>
<td>8-17</td>
</tr>
<tr>
<td>8.8</td>
<td>Vinyl Chloride from Ethane by the Inovyl Process Production Costs</td>
<td>8-19</td>
</tr>
<tr>
<td>8.9</td>
<td>Comparison of Ethane-Based and Ethylene-Based Processes</td>
<td>8-23</td>
</tr>
<tr>
<td>9.1</td>
<td>Vinyl Chloride by Other Processes Patent Summary</td>
<td>A-16</td>
</tr>
<tr>
<td>9.3</td>
<td>Vinyl Chloride from Acetylene by Hydrochlorination Production Costs</td>
<td>9-3</td>
</tr>
</tbody>
</table>