PEP Consolidated Report CR005

On-Purpose Acetic Acid

Marianne Asaro, Sr. Principal Analyst

Abstract

This report consolidates and updates the IHS Chemical Process Economics Program (PEP)’s technical and economic analyses of acetic acid manufacturing technologies from 1994 to the present. Acetic acid is a moderate-volume commodity chemical used mainly in the production of vinyl acetate, terephthalic acid, acetic anhydride, ethyl acetate, and butyl acetate. The current global production of nearly 20 million metric tons per year (MMtpa) is forecast to increase by 12% over the next four to five years. Celanese and BP (formerly British Petroleum) are the main producers of acetic acid in the Americas and Europe, respectively. In Asia, Celanese technology is used in China and Singapore, and BP’s process is used in Korea, Malaysia, and Taiwan.

Commercial carbonylation of methanol followed a path of homogeneous catalyst development over the years, from the BASF “high-pressure” process based on an iodide-promoted cobalt catalyst, followed by Monsanto’s dramatically improved “low-pressure” process using a methyl iodide-promoted rhodium catalyst, and then the improved “low-water” processes of Celanese and BP that decreased the cost of downstream separations. Chiyoda subsequently introduced a comparable process using a heterogeneous, supported form of the rhodium system that further simplified separations and catalyst operations. Most recently, BP sidestepped the need to purchase methanol by developing a novel carbonylation process using synthesis gas as feedstock.

Processes based on partial oxidation of C₂ or C₄ hydrocarbons were quickly replaced in new plant construction by the Monsanto process in the 1970s, and perhaps just one low-capacity plant using C₂ feedstock still operates today. Yet hydrocarbons still have the potential to compete with C₁ feedstocks for acetic acid production in some locations, and thus SABIC developed a streamlined process for production of acetic acid from ethane. A simplified ethylene-based process was also developed, by Showa Denko.

Technical descriptions and economic analysis are provided herein for the following six technologies:

- The Monsanto process for production of acetic acid by carbonylation of methanol at low-pressure conditions, using a homogeneous, aqueous rhodium–based catalyst;
- The Celanese AO Plus™ process for production of acetic acid by carbonylation of methanol at low pressure and low-water conditions, using a homogeneous rhodium-based catalyst;
- The BP Cativa™ process for production of acetic acid by carbonylation of methanol at low pressure and low-water conditions, using a homogeneous iridium-based catalyst;
- The BP SaaBre™ process for production of acetic acid via carbonylation of dimethyl ether at low pressure and low-water conditions, using a series of heterogeneous zeolite-based catalysts;
- The SABIC process for production of acetic acid by one-step, direct oxidation of ethane using a heterogeneous mixed metal oxide catalyst based on molybdenum and vanadium; and
- The Showa Denko process for production of acetic acid by one-step, direct oxidation of ethylene using a heterogeneous supported palladium-based catalyst.
Production of acetic acid is reviewed, with characterization of full patent portfolios for these technologies and selected characterization for other, noncommercial processes. The industry status is updated, and a summary of the processes is provided in terms of comparative economics and the key process indicators (KPI) of capital intensity, energy intensity, carbon efficiency, and carbon intensity. Lastly an interactive module is included, the iPEP Navigator Acetic Acid tool, that provides a snapshot of economics for each process and allows the user to select the process, units, and region of interest.

While the processes presented herein represent PEP’s independent interpretation of the literature and may not reflect in whole or in part the actual plant configurations, we do believe the conceptual designs sufficiently representative of plant configurations to enable Class III economic evaluations.
Contents

1 Introduction 12

2 Summary 15

Commercial status 16

Industrial producers/licensors 17

Acetic acid technologies 17

 The Monsanto acetic acid process 21

 The Celanese AO Plus process 22

Process economics 25

Key process indicators 33

3 Industry status 38

Demand and market drivers 39

Current producers and plant capacities 40

Product price 44

4 Technology review 45

Carbonylation of methanol 46

 Homogeneous catalysis by rhodium—The Monsanto acetic acid process 46

 Chemistry of methanol carbonylation 46

 Catalyst stability 48

 Side reactions 49

 Separation and purification 50

 Homogeneous low-water catalysis by rhodium—The Celanese AO process 51

 Carbonylation 51

 Catalyst recovery, deactivation, stabilization, and modification 57

 Purification 60

 Prevention of impurity formation 63

 Work by Millenium on Rh-catalyzed carbonylation of methanol 64

 Homogeneous low-water catalysis by iridium—The BP Cativa process 65

 Iridium-catalyzed carbonylation 66

 Catalyst development for the low-water system 70

 Other homogeneous catalyst systems 72

 Reaction system 73

 Catalyst stabilization 73

 Corrosion 74

 Purification 74

 Coproduct with acetic anhydride 75

 The Eastman process for production of acetic anhydride with optional acetic acid coproduction 75

 The BP process for coproduction of acetic anhydride and acetic acid 77

 Heterogeneous high-water catalysis by rhodium—The Chiyoda CT-ACETICA process 78

 Chemistry 80

 Development of the supported Rh catalyst system 81

 Catalyst degradation 85

 Suppression of impurities 86

 Reactor and operating conditions 86

 Corrosion 88

 Separation 89
Work by UOP and others 90
High-pressure homogeneous catalysis by cobalt—The BASF process 90
Carbonylation with syngas as raw material 91
Heterogeneous catalysis—The BP SaaBre process 91
Carbonylation 97
Dehydration—hydrolysis 101
Chemistry of the integrated process 104
Separations 106
Oxidation of acetaldehyde from C₂ feedstocks 106
Chemistry of acetaldehyde oxidation 106
Two-step conversion of ethylene to acetic acid—The Wacker process 108
One-step conversion of ethylene to acetic acid—The Showa Denko process 109
Chemistry 109
Development of the one-step ethylene oxidation catalyst system 109
Reactor and operating conditions 113
Separation 113
Work by Rhône-Poulenc on one-step oxidation of ethane to acetic acid 113
Oxidation of ethanol via acetaldehyde 114
Oxydehydrogenation of ethane—The SABIC process 115
Chemistry 116
Development of the ethane oxidation catalyst system 116
Reactor and operating conditions 119
Separation 120
Oxidation of C₄+ hydrocarbons 121
Oxidation of C₄+ paraffins 121
Chemistry, catalysts, and product distribution 121
Temperature and pressure 123
Reactor 124
Purification 124
Oxidation of n-butenes 125

5 Acetic acid by carbonylation of methanol using homogeneous Rh catalysts—
The Monsanto and AO Plus™ processes 126
The Monsanto acetic acid process 126
Process description 126
Section 100—Catalyst preparation and regeneration 126
Section 200—Methanol carbonylation 127
Section 300—Product purification 127
Process discussion 133
Reactor conditions 134
Catalyst components 134
Product purification 135
Materials of construction 135
Waste streams 135
Cost estimates 136
Fixed capital costs 136
Production costs 137
The Celanese AO Plus process 141
Process description 142
Section 100—Methanol carbonylation 142
Section 200—Product purification 142
Process discussion 149
Reactor conditions 149
Catalyst system 151
Product purification 151
Materials of construction 151
6 Acetic acid by carbonylation of methanol using homogeneous iridium catalysts—The Cativa™ process

Process description
- Section 100—Methanol carbonylation
- Section 200—Product purification

Process discussion
- Reactor conditions
- Catalyst system
- Product purification
- Materials of construction
- Waste streams

Cost estimates
- Fixed capital costs
- Production costs

Comparison of Cativa and AO Plus processes

Carbonylation processes leveraging methanol production

7 Acetic acid by carbonylation of dimethyl ether using heterogeneous catalysts—The SaaBre™ process

Process description
- Section 100—Acetic acid via the SaaBre process
 - Carbonylation of DME
 - Methanol synthesis
 - Dehydration and hydrolysis
 - Separation sequence

Process discussion
- Reactor conditions
- Catalyst system
- Product purification
- Materials of construction
- Waste streams

Cost estimates
- Obtaining syngas of SN~1
- Fixed capital costs
- Production costs

Economic comparison of the SaaBre process to the Cativa and AO Plus processes using market-priced and over-the-fence methanol

Future potential

8 Acetic acid by direct ethane oxidation—The SABIC process

Process description
- Section 100—Ethane oxidation
- Section 200—Product purification

Process discussion
- Selection of process design
- Feed
- Reactor and operating conditions
- Catalyst system and product slate
- Product purification
- Materials of construction
- Waste streams

Cost estimates
Table 5.9 Acetic acid via the Celanese AO Plus process—Design bases and assumptions
Table 5.10 Acetic acid via the Celanese AO Plus process—Stream flows
Table 5.11 Acetic acid via the Celanese AO Plus process—Summary of waste streams
Table 5.12 Acetic acid via the Celanese AO Plus process—Major equipment
Table 5.13 Acetic acid via the Celanese AO Plus process—Utilities summary
Table 5.14 Acetic acid via the Celanese AO Plus process—Total capital investment
Table 5.15 Acetic acid via the Celanese AO Plus process—Capital investment by section
Table 5.16 Acetic acid via the Celanese AO Plus process—Production costs
Table 6.1 Acetic acid via the BP Cativa process—Design bases and assumptions
Table 6.2 Acetic acid via the BP Cativa process—Stream flows
Table 6.3 Acetic acid via the BP Cativa process—Summary of waste streams
Table 6.4 Acetic acid via the BP Cativa process—Major equipment
Table 6.5 Acetic acid via the BP Cativa process—Utilities summary
Table 6.6 Acetic acid via the BP Cativa process—Total capital investment
Table 6.7 Acetic acid via the BP Cativa process—Capital investment by section
Table 6.8 Acetic acid via the BP Cativa process—Production costs
Table 6.9 Acetic acid via carboxylation using various methanol sources—Production costs
Table 7.1 Acetic acid via the BP SaaBre process—Design bases and assumptions
Table 7.2 Acetic acid via the BP SaaBre process—Stream flows
Table 7.3 Acetic acid via the BP SaaBre process—Summary of waste streams
Table 7.4 Acetic acid via the BP SaaBre process—Major equipment
Table 7.5 Acetic acid via the BP SaaBre process—Utilities summary
Table 7.6 Acetic acid via the BP SaaBre process—Total capital investment
Table 7.7 Acetic acid via the BP SaaBre process—Production costs
Table 7.8 Natural gas-based carboxylation processes for production of acetic acid—Production costs
Table 8.1 Acetic acid via the SABIC direct ethane oxidation process—Design bases and assumptions
Table 8.2 Acetic acid via the SABIC direct ethane oxidation process—Stream flows
Table 8.3 Acetic acid via the SABIC direct ethane oxidation process—Summary of waste streams
Table 8.4 Acetic acid via the SABIC direct ethane oxidation process—Major equipment
Table 8.5 Acetic acid via the SABIC direct ethane oxidation process—Utilities summary
Table 8.6 Acetic acid via the SABIC direct ethane oxidation process—Total capital investment
Table 8.7 Acetic acid via the SABIC direct ethane oxidation process—Capital investment by section
Table 8.8 Acetic acid via the SABIC direct ethane oxidation process—Production costs
Table 8.9 Acetic acid via hydrocarbon oxidation versus carboxylation—Production costs
Table 9.1 Acetic acid via the Showa Denko direct ethylene oxidation process—Design bases and assumptions
Table 9.2 Acetic acid via the Showa Denko direct ethylene oxidation process—Stream flows
Table 9.3 Acetic acid via the Showa Denko direct ethylene oxidation process—Summary of waste streams
Table 9.4 Acetic acid via the Showa Denko direct ethylene oxidation process—Major equipment
Table 9.5 Acetic acid via the Showa Denko direct ethylene oxidation process—Utilities summary
Table 9.6 Acetic acid via the Showa Denko direct ethylene oxidation process—Total fixed capital investment
Table 9.7 Acetic acid via the Showa Denko direct ethylene oxidation process—Capital investment by section
Table 9.8 Acetic acid via the Showa Denko direct ethylene oxidation process—Production costs
Table 9.9 Development of Showa Denko’s catalyst system for one-step oxidation of ethylene to acetic acid
Table 9.10 Acetic acid via the two-step ethylene oxidation process—Production costs
Figures

Figure 2.1 Block flow diagrams of acetic acid production processes 18
Figure 2.2 Factors of production for acetic acid processes 33
Figure 2.3 Key process indicators 35
Figure 2.4 CO2 footprint breakdown 37
Figure 3.1 Percent of world capacity for acetic acid by process 39
Figure 3.2 Supply and demand for acetic acid 40
Figure 3.3 World capacity for acetic acid by region 41
Figure 3.4 Price of acetic acid, US Gulf Coast 44
Figure 4.1 Rh-catalyzed methanol carbonylation reaction pathway 47
Figure 4.2 Catalyst recycle in carbonylation process (Celanese) 58
Figure 4.3 Impurities as a function of iodide for Rh/metals 59
Figure 4.4 Acetaldehyde, propionic acid as a function of STY for Rh/transition metals 59
Figure 4.5 Aldehyde removal system (Celanese) 62
Figure 4.6 Timeline of Celanese carbonylation patent topics and Clear Lake capacity increases 64
Figure 4.7 Ir-catalyzed methanol carbonylation reaction pathway 66
Figure 4.8 Block flow diagram of the CT-ACETICA process 79
Figure 4.9 Relative changes to productivity and kinetics with low water in the Chiyoda process 85
Figure 4.10 Slurry bubble column reactor with catalyst recycle and heat exchange 87
Figure 4.11 Hydrogen management for DME carbonylation 103
Figure 4.12 Acetaldehyde oxidation reaction pathway 107
Figure 4.13 Advanced reactor configuration for SABIC ethane oxidation process 120
Figure 5.1 Reactor type used for the Monsanto process 134
Figure 5.2 Production cost of acetic acid via the Monsanto process as a function of plant operating level and plant capacity 141
Figure 5.3 Reactor types considered for the Celanese process 150
Figure 5.4 Production cost of acetic acid via the Celanese AO Plus process as a function of plant operating level and plant capacity 158
Figure 6.1 Reactor type selected for the Cativa process 165
Figure 6.2 Production cost of acetic acid via the BP Cativa process as a function of plant operating level and plant capacity 173
Figure 7.1 Acetic acid via the BP SaaBre process—Block flow diagram with reaction sequence stoichiometries 188
Figure 7.2 Production cost of acetic acid via the BP SaaBre process as a function of plant operating level and plant capacity 196
Figure 7.3 Acetic acid via the BP SaaBre process—Block flow diagram including worldscale methanol 199
Figure 8.1 Production cost of acetic acid via the SABIC direct ethane oxidation process as a function of plant operating level and plant capacity 214
Figure 9.1 Production cost of acetic acid via the Showa Denko process as a function of plant operating level and plant capacity 230
Figure 11.1 Acetic acid via the Monsanto acetic acid process—Process flow diagram 310
Figure 11.2 Acetic acid via the Celanese AO Plus™ process—Process flow diagram 311
Figure 11.3 Acetic acid via the BP Cativa™ process—Process flow diagram 312
Figure 11.4 Acetic acid via the BP SaaBre™ process—Process flow diagram 313
Figure 11.5 Acetic acid via the SABIC direct ethane oxidation process—Process flow diagram 314
Figure 11.6 Acetic acid via the Showa Denko direct ethylene oxidation process—Process flow diagram 316
IHS Customer Care:
Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com
Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com
Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com