IHS CHEMICAL

Oxo Alcohols

PEP Consolidated Report CR004

February 2016

PEP Consolidated Report CR004
Oxo Alcohols

Dipti Dave
Senior Analyst II
Oxo Alcohols

Dipti Dave, Senior Analyst II

Abstract
This report consolidates and updates the IHS Process Economics Program (PEP) technical and economic analyses of oxo alcohols manufacturing technologies from 1995 to the present. The term “oxo” is the generic name for the chemicals manufactured from “oxo synthesis” chemistry, which is the hydroformylation of olefins by using syngas, carbon monoxide, and hydrogen. The oxo process or hydroformylation of olefins with synthesis gas (or syngas) is the principal route to C_3–C_15 aldehydes, which are converted to alcohols, acids, or other derivatives. By far the most important oxo chemical is n-butyraldehyde, followed by C_6–C_{13} aldehydes for plasticizer alcohols, isobutyraldehyde, valeraldehyde, and C_{12–C_{18}} aldehydes for detergent alcohols. Nearly all oxo aldehydes are converted to derivatives in plants adjacent to the hydroformylation unit; very small volumes of oxo aldehydes are transported.

Technical descriptions and economic analyses are provided herein for the eleven technologies listed below, four of which produce the intermediate aldehydes—three processes for n-butyraldehyde and one process for n-valeraldehyde—as feedstocks to be converted to oxo alcohol products. The other seven technologies covered produce a range of C_4–C_{15} oxo alcohols.

- Dow-Davy’s low-pressure (LP) OxoSM SELECTORSM process for n-butyraldehyde by propylene.
- The Union Carbide, Davy McKee, and Johnson Matthey LP oxo process with liquid recycle for n-butyraldehyde by propylene. (Union Carbide Corporation is a subsidiary of Dow Chemical Company, and Davy Process Technology Limited is a subsidiary of Johnson Matthey.)
- The Ruhrchemie/Rhône-Poulenc process for n-butyraldehyde by propylene. (Rhône Poulenc/Ruhrchemie is a subsidiary of Sanofi.)
- The BASF process for n-valeraldehyde by raffinate II C_4 olefins (2-butene).
- The BASF process for n-butanol by n-butyraldehyde.
- The hydrogenation to amyl alcohol by n-valeraldehyde.
- The Mitsubishi process for 2-ethylhexanol by n-butyraldehyde.
- The Exxon process for isononyl alcohol by isooctane.
- The Exxon process for isodecyl (isodecanol) alcohol by nonenes.
- The BASF process for 2-propylheptanol by n-valeraldehyde.
- The Shell process for primary linear C_{12–C_{15}} alcohols by linear olefins.

These and other technologies (past, present, and emerging) for oxo alcohol production are reviewed with a bibliography and abstracts for relevant patents since the mid-1990s. The industry status is updated, and the modern oxo alcohol processes are summarized in terms of economics and the key process indicators (KPI) of capital intensity and carbon intensity. Lastly, the iPEP Navigator interactive module is attached to the electronic version of this report. iPEP Navigator provides an economic snapshot for each process, allowing the user to select and compare the processes, units, and regions of interest.
Contents

1 Introduction 14
2 Summary 16
Manufacturing processes 18
n-Butyraldehyde (NBAL) 19
n-Valeraldehyde (NVAL) 19
n-Butanol (NBA) 19
Amyl alcohol 19
2-Ethylhexanol (2-EH) 19
Isononyl alcohol (INA) 19
Isodecyl alcohol (isodecanol) 20
2-Propylheptanol (2-PH) 20
Primary C₁₂–C₁₅ linear alcohols 20
Block flow diagrams for 11 technologies 20
Process overview for 11 technologies 24
Dow-Davy’s low-pressure Oxo℠ SELECTOR℠ process for n-butyraldehyde by propylene 24
Union Carbide, Davy McKee, and Johnson Matthey process for n-butyraldehyde by propylene 24
Ruhrchemie/Rhône-Poulenc process for n-butyraldehyde by propylene 25
BASF process for n-valeraldehyde by raffinate II C₄ olefins, 2-butene 25
BASF process for n-butanol by n-butyraldehyde 25
Hydrogenation to amyl alcohol by n-valeraldehyde 25
Mitsubishi process for 2-ethylhexanol by n-butyraldehyde 25
Exxon process for isononyl alcohol by isooctane 26
Exxon process for isodecyl (isodecanol) alcohol by nonenes 26
BASF process for 2-propylheptanol by n-valeraldehyde 27
Shell process for primary linear C₁₂–C₁₅ alcohols by linear olefins 27
Summary of oxo alcohol process technologies 28
Process economics 32
Key process indicators 41
3 Industry status 46
4 Technology review 54
Background technology 55
New developments 56
Recent Abengoa activity 56
Patent review 56
Recent Dow patent 56
Recent Shell patent 57
Recent ExxonMobil patents 57
Recent BASF patent 57
Recent Mitsubishi patents 59
Background hydroformylation 61
Homogeneous catalysis 61
Hydroformylation and catalysis 63
Catalytic cycle 64
Catalyst and ligand degradation 65
n-Butyraldehyde (NBAL)
- Catalyst system 66
- Catalyst mechanism 68
- Catalyst degradation 69
- Reaction medium 69
- Catalyst recovery 70
- Reaction conditions 72
 - Molar ratio of H₂ to CO 72

Process description 72
- Increasing yield on propylene 73
- Selection of catalyst ligands 74
- Phosphite ligands 74
- Phosphine ligands 75
- Water-soluble Rh/phosphine complexes 75
- Control of the n:i ratio 76
- Separation of the aldehyde and catalyst complex 76
- Coproduction of aldehydes and ketones 76
- Processes for regenerating catalysts 76

n-Valeraldehyde (NVAL)
- Catalyst system 77
- Reaction conditions 78
- By-products/impurities 79
- BASF 79
- Dow 81

Aldol condensation 82
- Aldol condensation reactions 82
- BASF aldol condensation 83
- Davy aldolization-dehydration process 83
- Aldolization and dehydration 85

n-Butanol (NBA)
- Catalyst system 87
- Reaction conditions 88
- Main by-products 88
- Product separation 88

Amyl alcohol 88
- Hydrogenation 89
- Chemistry for hydrogenation 89

2-Ethylhexanol (2-EH)
- Catalyst system 89
- Reaction conditions 90
- Reaction stages 90

Isononyl alcohol (INA)
- Cobalt catalyst recovery 91
 - Hydrocobalt dicobalt-tetracarbonyl octacarbonyl 92
 - Carbonyl salt (aqueous) 92
 - Carbonyl formic cobalt salt acid formate 92
- Stripping 93
- Demetalling 93
 - Demetalling downstream of the stripper (C₈+ products) 93
 - Demetalling upstream of the stripper (C₅ and lower products) 93
- Preforming 94

Isodecyl alcohol (isodecanol, or IDA)
- Branched-chain oxo alcohols 94
Physical/chemical properties 95
Environmental issues 95
ExxonMobil process configuration 96
2-Propylheptanol (2-PH) 97
 Aldol condensation 97
 Chemistry for aldol condensation 98
 Hydrogenation 98
 Chemistry for hydrogenation 98
Primary linear C₁₂–C₁₅ alcohols 99
 Chemistry 99
 Catalyst limitations 100
 Improved linearity 101
5 n-Butyaldehyde production 102
 Dow and Davy Process Technology LP Oxo℠ SELECTOR℠ technology 102
 Process description 103
 Section 100—NBAL production 103
 Section 200—NBAL recovery 105
 Section 300—Propylene recovery 105
Process discussion 112
 Raw materials 112
 Propylene feedstock purity 112
 Catalyst system 112
 Reactor sizing 113
 Reaction conditions 113
 Process configuration 113
 Product recovery 114
 Materials of construction 114
 Cost estimates 114
 Fixed-capital costs 114
 Production costs 115
 Process description—Oil-soluble phosphine process with dual reactor 119
 Waste streams 122
 Process discussion—Oil-soluble phosphine process with dual reactors 124
 Materials of construction 125
 Capital and operating costs 125
 Process description—water-soluble phosphine process with a secondary reactor 129
 Waste streams 134
 Process discussion—Water-soluble phosphine process with a secondary reactor 136
 Materials of construction 136
 Uncertainties 136
 Capital and operating costs—Water-soluble phosphine process with a secondary reactor 137
6 n-Valeraldehyde from C₄ olefins by BASF hydroformylation 142
 Process description 142
 Chemistry 142
 Main reactions 142
 Process chemistry 143
 Hydroformylation 143
 Process description 144
 Section 100—Feed distillation with equilibrium reaction and isomerization plus hydrogenation 145
 Section 200—Hydroformylation with pressure separation and recovery distillation 145
 Basis for design and evaluation 146
 Design references 146
 Stream flows 148
Environmental 149
Process description 152
- Section 100—Feed distillation with equilibrium reaction and isomerization plus hydrogenation 152
- Section 200—Hydroformylation with pressure separation and recovery distillation 153
Offsite storage 154
Cost estimates 155
- Fixed-capital costs 155
- Production costs 155

7 Production of n-butanol from n-butyraldehyde 159
Process description 160
- Section 100—n-Butanol production 160
- Section 200—n-Butanol purification 161
Process discussion 166
- Raw material source 166
- Catalysts 166
- Reactor 166
- Heat exchangers sizing 167
- Product recovery 167
- Materials of construction 167
- Equipment listing and utilities consumption 167
Cost estimates 167
- Fixed-capital costs 167
- Production costs 168

8 Production of amyl alcohol from n-valeraldehyde 173
Hydrogenation 173
- Chemistry for hydrogenation 173
Process description 174
- Section 100—Amyl alcohol production 174
Process discussion 178
- Raw material source 178
- Catalysts 178
- Reactors 179
- Heat exchanger sizing 179
- Product recovery 179
- Materials of construction 179
- Equipment listing and utilities consumption 179
Cost estimates 180
- Fixed-capital costs 180
- Production costs 180

9 Production of 2-ethylhexanol from n-butyraldehyde 185
Process description 186
- Section 100—2-Ethylhexenal production 186
- Section 200—2-Ethylhexanol production 187
Process discussion 194
- Raw material source 195
- Catalysts 195
- Reactors 195
- Heat exchangers sizing 196
- Product recovery 196
- Materials of construction 196
- Equipment listing and utilities consumption 196
Cost estimates 196
- Fixed-capital costs 197
Production costs 197

10 Exxon process for isononyl alcohol using cobalt catalyst 202

Process description 202
Section 100—Hydroformylation 202
Section 200—Co catalyst recovery and product demetalling 202
Demetalling 203
Preforming 203
Section 300—Hydrogenation and product refining 203

Process discussion 211
Cracking of heavy by-products 211
Cost estimates 211
Fixed-capital costs 212
Production costs 212

11 Exxon process for production of isodecyl alcohol 217

Process description 217
Section 100—Hydroformylation of nonenes 217
Section 200—Recovery of the cobalt catalyst 218
Section 300—Hydrogenation and purification 218

Process discussion 228
Heat exchanger sizing 229
Product recovery 229
Offsite storage 229
Cost estimates 230
Fixed-capital costs 230
Production costs 230

12 Production of 2-propylheptanol from n-valeraldehyde 237

Aldol condensation 237
Chemistry for aldol condensation 237
Hydrogenation 238
Chemistry for hydrogenation 238

Process description 238
Section 100—2-Propyl-2-heptenal production 239
Section 200—2-Propylheptanol production 240

Process discussion 247
Raw material source 247
Catalysts 247
Reactors 247
Heat exchanger sizing 248
Product recovery 248
Materials of construction 248
Equipment listing and utilities consumption 248
Cost estimates 248
Fixed-capital costs 249
Production costs 249

13 Primary linear C_{12}–C_{15} alcohols 255

Process description 255
Process discussion 260
Flexibility of products and feedstocks 261
Feeds 261
Product linearity 261
Oxo reactor product separation 261
Paraffin by-product 262
Dial removal 262
Figures

Figure 2.1 Block flow diagrams of processes for intermediates and oxo alcohols production 21
Figure 2.2 Factors of production aldehyde processes 39
Figure 2.3 Factors of production for oxo alcohols processes 40
Figure 2.4 Key process indicators 42
Figure 2.5 Key process indicators 43
Figure 2.6 CO2 footprint breakdown per ton of aldehydes 44
Figure 2.7 CO2 footprint breakdown per ton of oxo alcohols 45
Figure 3.1 World consumption of oxo chemicals—2014 48
Figure 3.2 World consumption of plasticizer alcohols—2014 50
Figure 3.3 World production capacity for detergent alcohols by major producer—2012 51
Figure 4.1 Multiphase reactor 58
Figure 4.2 Multiphase reactor with after-reactor 59
Figure 4.3 Feedstock olefin heated by external source 60
Figure 4.4 Feedstock olefin heated by heat of hydroformylation reaction 60
Figure 4.5 Chemicals from heterogeneous catalytic (and noncatalytic) processing of crude oil 62
Figure 4.6 Chemicals and classes of chemicals manufactured by homogeneous catalytic processes 62
Figure 4.7 Basic catalytic cycle for the hydroformylation of propylene with Rh/PPh3-based catalyst 65
Figure 4.8 Basic catalytic cycle for the degradation of PPh3 ligand and catalyst 65
Figure 4.9 n-Butyraldehyde production Rh/phosphine catalyst hydroformylation mechanism 68
Figure 4.10 NBAL production from propylene 73
Figure 4.11 Ligand structure 78
Figure 4.12 BASF process scheme for n-valeraldehyde 80
Figure 4.13 Conversion of C4 raffinate as a function of time 81
Figure 4.14 Calixarene bisphosphate ligand 82
Figure 4.15 Aldol condensation and hydrogenation process flow diagram 83
Figure 4.16 Aldolization-dehydration process 84
Figure 4.17 Exxon process for INA based on PEP’s current understanding 91
Figure 4.18 Exxon process for INA—Catalyst recovery 92
Figure 4.19 ExxonMobil hydroformylation 96
Figure 4.20 Conventional cobalt catalyst mechanism 100
Figure 4.21 Structure of a typical complex with tributyl phosphine ligand 101
Figure 5.2 n-Butyraldehyde production by LP OxoSM SELECTORS process as a function of product value and plant operating level 119
Figure 5.4 n-Butyraldehyde by oil-soluble phosphine process as a function of product value versus plant operating level 129
Figure 5.6 n-Butyraldehyde by water-soluble phosphine process as a function of product value versus plant operating level 141
Figure 6.2 Ligand structure 144
Figure 6.3 n-Valeraldehyde trimer 144
Figure 6.4 n-Valeraldehyde from C4 olefins by BASF hydroformylation as a function of product value versus plant operating level 158
Figure 7.2 n-Butanol from n-butyraldehyde as a function of product value versus plant operating level 172
Figure 8.2 Amyl alcohol from n-valeraldehyde as a function of product value versus plant operating level 184
Figure 9.2 2-Ethylhexanol from n-butyraldehyde as a function of product value versus plant operating level 201
Figure 10.2 Isononyl alcohol by the Exxon process as a function of product value versus plant operating level 216
Figure 11.2 Isodecanol from nonenes via Exxon process as a function of product value versus plant operating level 236
Figure 12.2 Production of 2-propylheptanol from n-valeraldehyde as a function of product value versus plant operating level 254
Figure 13.2 Alcohols, primary linear, C12–C15 from linear olefins, cobalt phosphine catalyst, as a function of product value versus plant operating level 268
Figure 5.1 n-Butyraldehyde production by LP OxoSM SELECTORS process 336
Figure 5.3 n-Butyraldehyde from propylene by process with oil-soluble dual reactors phosphine 338
Figure 5.5 n-Butyraldehyde from propylene by the water-soluble phosphine process with a secondary reactor 339
Figure 6.1 Production of n-valeraldehyde from raffinate II C4 olefins 340
Figure 7.1 Production of n-butanol from n-butyraldehyde 342
Figure 8.1 Production of amyl alcohol from n-valeraldehyde 343
Figure 9.1 Production of 2-ethylhexanol from n-buteraldehyde 344
Figure 10.1 Exxon process for INA using cobalt catalyst 346
Figure 11.1 Exxon isodecyl alcohol from nonenes by hydroformylation and hydrogenation 348
Figure 12.1 Production of 2-propylheptanol from n-valeraldehyde 350
Figure 13.1 Primary alcohols by hydroformylation of linear olefins 352

Tables

Table 2.1 World consumption of oxo chemicals—2014 17
Table 2.2 Major world producers of oxo chemicals 18
Table 2.3 Summary of oxo alcohol intermediate aldehyde process technologies 28
Table 2.4 Summary of oxo alcohol process technologies 30
Table 2.5 Commercial n-butyraldehyde and n-valeraldehyde technologies—Total capital investment 33
Table 2.6 Commercial oxo alcohols technologies—Total capital investment 34
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.7</td>
<td>Commercial n-butyaldehyde and n-valeraldehyde technologies— Production costs</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Commercial oxo alcohols technologies—Production costs</td>
<td>37</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Definitions of key process indicators</td>
<td>41</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>World supply/demand for oxo chemicals—2014</td>
<td>47</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Major world producers of oxo chemicals</td>
<td>48</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>World consumption of plasticizer alcohols</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Major world producers of plasticizer alcohols</td>
<td>50</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Major world producers of detergent alcohols—2012</td>
<td>51</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>US prices for plasticizer alcohols</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>US market prices for detergent alcohols</td>
<td>53</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Process parameters for several hydroformylation processes</td>
<td>64</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>HNP for various phosphorus-containing ligands</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Raffinate II stream composition</td>
<td>80</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>C₂ raffinate stream composition</td>
<td>81</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>n-Butyraldehyde production by LP Oxo<sup>SM</sup> SELECTOR<sup>SM</sup> process— Design bases and assumptions</td>
<td>106</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>n-Butyraldehyde production by LP Oxo<sup>SM</sup> SELECTOR<sup>SM</sup> process— Stream flows</td>
<td>107</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>n-Butyraldehyde production by LP Oxo<sup>SM</sup> SELECTOR<sup>SM</sup> process— Summary of waste streams</td>
<td>109</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>n-Butyraldehyde production by LP Oxo<sup>SM</sup> SELECTOR<sup>SM</sup> process— Major equipment</td>
<td>110</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>n-Butyraldehyde production by LP Oxo<sup>SM</sup> SELECTOR<sup>SM</sup> process— Utilities summary</td>
<td>112</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>n-Butyraldehyde production by LP Oxo<sup>SM</sup> SELECTOR<sup>SM</sup> process— Total capital investment</td>
<td>116</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>n-Butyraldehyde production by LP Oxo<sup>SM</sup> SELECTOR<sup>SM</sup> process— Capital investment by section</td>
<td>117</td>
</tr>
<tr>
<td>Table 5.8</td>
<td>n-Butyraldehyde production by LP Oxo<sup>SM</sup> SELECTOR<sup>SM</sup> process— Production costs</td>
<td>118</td>
</tr>
<tr>
<td>Table 5.9</td>
<td>n-Butyraldehyde from propylene by the oil-soluble phosphine process with dual reactors—Design bases and assumptions</td>
<td>120</td>
</tr>
<tr>
<td>Table 5.10</td>
<td>n-Butyraldehyde from propylene by the oil-soluble phosphine process with dual reactors—Stream flows</td>
<td>121</td>
</tr>
<tr>
<td>Table 5.11</td>
<td>n-Butyraldehyde from propylene by the oil-soluble phosphine process with dual reactors—Summary of waste streams</td>
<td>122</td>
</tr>
<tr>
<td>Table 5.12</td>
<td>n-Butyraldehyde from propylene by the oil-soluble phosphine process with dual reactors—Major equipment</td>
<td>123</td>
</tr>
<tr>
<td>Table 5.13</td>
<td>n-Butyraldehyde from propylene by the oil-soluble phosphine process with dual reactors—Utilities summary</td>
<td>124</td>
</tr>
<tr>
<td>Table 5.14</td>
<td>n-Butyraldehyde from propylene by the oil-soluble phosphine process with dual reactors—Total capital investment</td>
<td>126</td>
</tr>
<tr>
<td>Table 5.15</td>
<td>n-Butyraldehyde from propylene by the oil-soluble phosphine process with dual reactors—Total capital investment by section</td>
<td>127</td>
</tr>
<tr>
<td>Table 5.16</td>
<td>n-Butyraldehyde from propylene by the oil-soluble phosphine process with dual reactors—Production costs</td>
<td>127</td>
</tr>
<tr>
<td>Table 5.17</td>
<td>n-Butyraldehyde from propylene by the water-soluble phosphine process with a secondary reactor—Design bases and assumptions</td>
<td>131</td>
</tr>
<tr>
<td>Table 5.18</td>
<td>n-Butyraldehyde from propylene by the water-soluble phosphine process with a secondary reactor—Stream flows</td>
<td>132</td>
</tr>
<tr>
<td>Table 5.19</td>
<td>n-Butyraldehyde from propylene by the water-soluble phosphine process with a secondary reactor—Summary of waste streams</td>
<td>134</td>
</tr>
<tr>
<td>Table 5.20</td>
<td>n-Butyraldehyde from propylene by the water-soluble phosphine process with a secondary reactor—Major equipment</td>
<td>135</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5.21</td>
<td>n-Butyraldehyde from propylene by the water-soluble phosphine process with a secondary reactor—Utilities summary</td>
<td>136</td>
</tr>
<tr>
<td>5.22</td>
<td>n-Butyraldehyde from propylene by the water-soluble phosphine process with a secondary reactor—Total capital investment</td>
<td>138</td>
</tr>
<tr>
<td>5.23</td>
<td>n-Butyraldehyde from propylene by the water-soluble phosphine process with a secondary reactor—Capital investment by section</td>
<td>139</td>
</tr>
<tr>
<td>5.24</td>
<td>n-Butyraldehyde from propylene by the water-soluble phosphine process with a secondary reactor—Production costs</td>
<td>140</td>
</tr>
<tr>
<td>6.1</td>
<td>Reaction equipment items with name and section number</td>
<td>142</td>
</tr>
<tr>
<td>6.2</td>
<td>Butane- and butane-forming reactions</td>
<td>143</td>
</tr>
<tr>
<td>6.3</td>
<td>Hydroformylation reactions</td>
<td>143</td>
</tr>
<tr>
<td>6.4</td>
<td>Process sections</td>
<td>146</td>
</tr>
<tr>
<td>6.5</td>
<td>n-Valeraldehyde from C4 olefins by BASF hydroformylation—Design basis and assumptions</td>
<td>147</td>
</tr>
<tr>
<td>6.6</td>
<td>n-Valeraldehyde from C4 olefins by BASF hydroformylation—Stream flows</td>
<td>148</td>
</tr>
<tr>
<td>6.7</td>
<td>n-Valeraldehyde from C4 olefins by BASF hydroformylation—Summary of process waste</td>
<td>149</td>
</tr>
<tr>
<td>6.8</td>
<td>n-Valeraldehyde from C4 olefins by BASF hydroformylation—Major equipment</td>
<td>150</td>
</tr>
<tr>
<td>6.9</td>
<td>n-Valeraldehyde from C4 olefins by BASF hydroformylation—Utilities summary</td>
<td>151</td>
</tr>
<tr>
<td>6.10</td>
<td>n-Valeraldehyde from C4 olefins by BASF hydroformylation—Total capital investment</td>
<td>155</td>
</tr>
<tr>
<td>6.11</td>
<td>n-Valeraldehyde from C4 olefins by BASF hydroformylation—Capital investment by section</td>
<td>156</td>
</tr>
<tr>
<td>6.12</td>
<td>n-Valeraldehyde from C4 olefins by BASF hydroformylation—Production costs</td>
<td>157</td>
</tr>
<tr>
<td>7.1</td>
<td>n-Butanol from n-butyraldehyde—Design bases and assumptions</td>
<td>162</td>
</tr>
<tr>
<td>7.2</td>
<td>n-Butanol from n-butyraldehyde—Stream flows</td>
<td>163</td>
</tr>
<tr>
<td>7.3</td>
<td>n-Butanol from n-butyraldehyde—Summary of waste streams</td>
<td>164</td>
</tr>
<tr>
<td>7.4</td>
<td>n-Butanol from n-butyraldehyde—Major equipment</td>
<td>165</td>
</tr>
<tr>
<td>7.5</td>
<td>n-Butanol from n-butyraldehyde—Utilities summary</td>
<td>166</td>
</tr>
<tr>
<td>7.6</td>
<td>n-Butanol from n-butyraldehyde—Total capital investment</td>
<td>169</td>
</tr>
<tr>
<td>7.7</td>
<td>n-Butanol from n-butyraldehyde—Capital investment by section</td>
<td>170</td>
</tr>
<tr>
<td>7.8</td>
<td>n-Butanol from n-butyraldehyde—Production cost</td>
<td>171</td>
</tr>
<tr>
<td>8.1</td>
<td>Production of amyl alcohol from n-valeraldehyde—Design bases and assumptions</td>
<td>175</td>
</tr>
<tr>
<td>8.2</td>
<td>Production of amyl alcohol from n-valeraldehyde—Stream flows</td>
<td>176</td>
</tr>
<tr>
<td>8.3</td>
<td>Amyl alcohol from n-valeraldehyde—Summary of waste streams</td>
<td>177</td>
</tr>
<tr>
<td>8.4</td>
<td>Production of amyl alcohol from n-valeraldehyde—Major equipment</td>
<td>177</td>
</tr>
<tr>
<td>8.5</td>
<td>Production of amyl alcohol from n-valeraldehyde—Utilities summary</td>
<td>178</td>
</tr>
<tr>
<td>8.6</td>
<td>Production of amyl alcohol from n-valeraldehyde—Total capital investment</td>
<td>181</td>
</tr>
<tr>
<td>8.7</td>
<td>Production of amyl alcohol from n-valeraldehyde—Capital investment by section</td>
<td>182</td>
</tr>
<tr>
<td>8.8</td>
<td>Production of amyl alcohol from n-valeraldehyde—Production costs</td>
<td>183</td>
</tr>
<tr>
<td>9.1</td>
<td>Production of 2-ethylhexanol from n-butyraldehyde—Design bases and assumptions</td>
<td>188</td>
</tr>
<tr>
<td>9.2</td>
<td>Production of 2-ethylhexanol from n-butyraldehyde—Stream flows</td>
<td>190</td>
</tr>
<tr>
<td>9.3</td>
<td>Production of 2-ethylhexanol from n-butyraldehyde—Summary of waste streams</td>
<td>192</td>
</tr>
<tr>
<td>9.4</td>
<td>Production of 2-ethylhexanol from n-butyraldehyde—Major equipment</td>
<td>193</td>
</tr>
<tr>
<td>9.5</td>
<td>Production of 2-ethylhexanol from n-butyraldehyde—Utility summary</td>
<td>194</td>
</tr>
<tr>
<td>9.6</td>
<td>Production of 2-ethylhexanol from n-butyraldehyde—Total fixed capital</td>
<td>198</td>
</tr>
</tbody>
</table>
Table 9.7 Production of 2-ethylhexanol from n-butyraldehyde—Capital investment by section
Table 9.8 Production of 2-ethylhexanol from n-butyraldehyde—Production costs
Table 10.1 Exxon isononyl alcohol process using cobalt catalyst—Design bases and assumptions
Table 10.2 Exxon isononyl alcohol process using cobalt catalyst—Stream flows
Table 10.3 Exxon isononyl alcohol process using cobalt catalyst—Summary of waste streams
Table 10.4 Exxon isononyl alcohol process using cobalt catalyst—Major equipment
Table 10.5 Exxon isononyl alcohol process using cobalt catalyst—Utilities summary
Table 10.6 Exxon isononyl alcohol process using cobalt catalyst—Total capital investment
Table 10.7 Exxon isononyl alcohol process using cobalt catalyst—Production cost
Table 11.1 Exxon isodecyl alcohol from nonenes by hydroformylation and hydrogenation—Design bases and assumptions
Table 11.2 Exxon isodecyl alcohol from nonenes by hydroformylation and hydrogenation—Stream flows
Table 11.3 Exxon isodecyl alcohol from nonenes by hydroformylation and hydrogenation—Summary of waste streams
Table 11.4 Exxon isodecyl alcohol from nonenes by hydroformylation and hydrogenation—Major equipment
Table 11.5 Exxon isodecyl alcohol from nonenes by hydroformylation and hydrogenation—Utilities summary
Table 11.6 Exxon isodecyl alcohol from nonenes by hydroformylation and hydrogenation—Total capital investment
Table 11.7 Exxon isodecyl alcohol from nonenes via Exxon process—Production costs
Table 12.1 Production of 2-propylheptanol from n-valeraldehyde—Design bases and assumptions
Table 12.2 Production of 2-propylheptanol from n-valeraldehyde—Stream flows
Table 12.3 Production of 2-propylheptanol from n-valeraldehyde—Summary of waste streams
Table 12.4 Production of 2-propylheptanol from n-valeraldehyde—Major equipment
Table 12.5 Production of 2-propylheptanol from n-valeraldehyde—Utilities summary
Table 12.6 Production of 2-propylheptanol from n-valeraldehyde—Total capital investment
Table 12.7 Production of 2-propylheptanol from n-valeraldehyde—Capital investment by section
Table 12.8 Production of 2-propylheptanol from n-valeraldehyde—Production costs
Table 13.1 Primary linear C_{12–15} alcohols—Design bases and assumptions
Table 13.2 Primary linear C_{12–15} alcohols—Stream flows
Table 13.3 Primary linear olefins—Summary of waste streams
Table 13.4 Primary linear C_{12–15} alcohols—Major equipment
Table 13.5 Primary linear C_{12–15} alcohols—Utilities summary
Table 13.6 Primary linear C_{12–15} alcohols from linear olefins—Total capital investment
Table 13.7 Primary linear C12–C15 alcohols from linear olefins—Capital investment by section
Table 13.8 Primary linear C_{12–15} alcohols from linear olefins—Production costs