Propylene Oxide

Marianne Asaro, Senior Principal Analyst

Abstract
This report consolidates and updates the Process Economics Program’s technical and economic analyses of propylene oxide (PO) manufacturing technologies from 1970 to the present. PO is consumed primarily as a comonomer in the production of polyether polyols, most of which are used to manufacture polyurethanes. Polyurethanes derived from PO are applied to the manufacture of rigid and flexible foams, elastomers, adhesives, sealants, coatings, and fibers. Lower-volume, nonurethane applications of PO include polyether polyl surfactants and demulsifiers; propylene glycol for de-icing, fiberglass, and hydraulic fluids; propylene oxide glycol ethers and propylene carbonate solvents; polyalkylene glycol fuel additives and lubricants; and numerous others.

Almost half of current global PO capacity uses processes based on oxidation of propylene by the organic hydroperoxides ethylbenzyl hydroperoxide (EBHP) and tert-butyl hydroperoxide (TBHP), at about 27% and 15%, respectively. The EBHP and TBHP processes coproduce more tonnage of their by-products (styrene and t-butanol, respectively) than PO; however, despite concerns over the years, the markets for their coproducts continue to support the PO processes.

The chlorohydrin route is disfavored for new plant start-ups in most locations, owing to its coproduction of copious saline wastewater, but still accounts for about 41% of global PO capacity. The environmental viability of a modern chlorohydrin plant rests on its scale of production, wherein large-scale plants can be fully integrated with chlorine/caustic plants.

Lower-volume commercial processes include hydroperoxidation using cumyl hydroperoxide as an oxidant, at 2% of global capacity, and the newer HPPO processes using hydrogen peroxide, at 15% of global capacity. New start-ups or expansions at mid- to large-scale have been announced using the HPPO and TBHP processes, with a few small-scale plants announced using chlorohydration.

Technical descriptions and economic analyses are provided herein for the following ten technologies, all of which use propylene as feedstock:

- The LyondellBasell process for PO and t-butyl alcohol by hydroperoxidation using TBHP
- The Huntsman process for PO and t-butyl alcohol by hydroperoxidation using TBHP
- The LyondellBasell process for PO and styrene by hydroperoxidation using EBHP
- The Shell process for PO and styrene by hydroperoxidation using EBHP
- The Sumitomo process for PO by hydroperoxidation using cumyl hydroperoxide (CHP)
- The BASF-Dow process for PO by hydroperoxidation using hydrogen peroxide (HP)
• The Evonik–Uhde process for PO by hydroperoxidation using HP

• The AIST-Nippon Shokubai, non-commercial process for PO by reaction of propylene, O₂, and H₂ in the same reactor

• The chlorohydrin process for PO by chlorination followed by treatment with calcium hydroxide derived from lime

• The chlorohydrin process for PO by chlorination followed by treatment with sodium hydroxide

These and other technologies past, present, and emerging for PO production are reviewed with a bibliography and abstracts for relevant patents since the 1950s. The industry status is updated, the modern PO processes are summarized in terms of comparative economics and the key process indicators (KPI) of capital intensity, energy intensity, carbon efficiency, and carbon intensity. Lastly, the iPEP Navigator PO tool is attached to the electronic version of this report. The iPEP Navigator interactive module provides an economic snapshot for each process, allowing the user to select and compare the processes, units, and regions of interest.
Contents

Glossary xiv

1 Introduction 1-1

2 Summary 2-1
Commercial status 2-2
Industrial producers/licensors 2-3
PO technologies 2-3
Propylene oxide/t-butyl alcohol by hydroperoxidation using the LyondellBasell process 2-4
Propylene oxide/t-butyl alcohol by hydroperoxidation using the Huntsman process 2-7
Propylene oxide/styrene monomer by hydroperoxidation using the LyondellBasell process 2-10
Propylene oxide/styrene monomer by hydroperoxidation using the Shell process 2-11
Propylene oxide by hydroperoxidation using the Sumitomo process 2-12
Propylene oxide by hydroperoxidation using the BASF-Dow process 2-13
Propylene oxide by hydroperoxidation using the Evonik-Uhde process 2-14
Propylene oxide by oxidation using the AIST-Nippon Shokubai process 2-15
Propylene oxide by chlorohydration using the lime saponification process 2-15
Propylene oxide by chlorohydration using the cell liquor saponification process 2-16
Process economics 2-17
Economic aspects of HPPO technology 2-23
Key process indicators 2-25

3 Industry status 3-1
Demand and market drivers 3-2
Current producers and plant capacities 3-3
Recent and planned capacity additions 3-7
Product prices 3-8

4 Technology review 4-1
I. Hydroperoxidation processes using organic hydroperoxides 4-2
IA. Hydroperoxidation using TBHP 4-3
Chemistry of isobutane oxidation to TBHP 4-3
Reaction conditions and performance in isobutane oxidation 4-4
Chemistry and catalysis of propylene oxidation to PO using TBHP 4-6
Homogeneous catalysis of epoxidation with TBHP 4-6
Heterogeneous catalysis of epoxidation with TBHP 4-7
Catalyst recovery 4-8
Reaction conditions and performance in epoxidation of propylene with TBHP 4-8
Separation of epoxidation product 4-9
Treatment of t-butyl alcohol coproduct 4-9
Purification of propylene oxide 4-10
Lyondell and Huntsman TBHP processes 4-12
IB. Hydroperoxidation using EBHP 4-13
Chemistry of ethylbenzene oxidation 4-13
Reaction conditions and performance in ethylbenzene oxidation 4-14
Chemistry and catalysis of propylene oxidation to PO using EBHP 4-15
Homogeneous catalysis of epoxidation with EBHP 4-15
Heterogeneous catalysis of epoxidation with EBHP 4-16
Catalyst recovery and regeneration 4-16
Reaction conditions and performance in epoxidation of propylene with EBHP 4-17
Separation and purification of epoxidation product 4-18
Dehydration of α-methylbenzyl alcohol to styrene 4-19
Hydrogenation of acetophenone 4-19
Styrene recovery 4-20
Waste treatment 4-20
Lyondell and Shell EBHP processes 4-21

IC. Hydroperoxidation using CHP 4-22
Chemistry of cumene oxidation to CHP 4-22
Reaction conditions and performance in cumene oxidation 4-23
Chemistry and catalysis of propylene oxidation to PO using CHP 4-23
Homogeneous catalysis of epoxidation with CHP 4-24
Heterogeneous catalysis of epoxidation with CHP 4-24
Catalyst recovery 4-25
Separation of epoxidation product 4-25
DMBA dehydration-hydrogenation 4-25
Sumitomo CHP process 4-25

II. Hydroperoxidation processes using hydrogen peroxide 4-27
IIA. Hydroperoxidation with integrated HP production 4-27
Chemistry of HP production 4-27
HP via anthraquinone 4-28
HP by direct reaction of hydrogen and oxygen 4-30
HP by oxidation of a secondary alcohol 4-31
Catalysts for propylene epoxidation with HP 4-31
Catalyst regeneration 4-36
Reaction conditions and performance in propylene epoxidation with HP 4-37
Separation and purification of epoxidation product 4-38

IIIB. Propylene oxide by oxidation using O₂ and H₂ co-feeds 4-40
Pd on TS-1 catalyst systems using O₂/H₂: ARCO Chemical/Lyondell 4-41
Pd on TS-1 catalyst systems using O₂/H₂: BASF 4-47
Pd-Pt on TS-1 catalyst systems using O₂/H₂ 4-47
Au-based catalyst systems using O₂/H₂ 4-50
Au-based catalyst systems using O₂/H₂: Bayer 4-51
Au on TS-1 catalyst systems using O₂/H₂: Dow Chemical 4-52
Au on titania catalyst systems using O₂/H₂: Nippon Shokubai and AIST 4-52
HP via a hydrocarbon source of H₂ 4-54
Other catalyst systems using O₂/H₂ 4-54
Propylene epoxidation with molecular oxygen and CO or NO as reductant instead of H₂ 4-55

III. Propylene oxide via chlorohydrination 4-55
IIIA. PO via chlorohydrin using the conventional lime process 4-56
Chemistry of the chlorohydrin process using lime 4-56
Reactor configurations and operating conditions for chlorohydrination 4-59
Reactor configurations and operating conditions for saponification 4-61
Recovery, purification, and waste treatment 4-61

IIIB. PO via chlorohydrin using recycled brine (cell liquor) from a chlorine plant 4-62
Chemistry of the chlorohydrin process using cell liquor 4-62
Reactor configurations for chlorohydrination and saponification 4-64
Recovery, purification, and waste treatment 4-65
III. PO via the electrochemical chlorohydrin process 4-65
 The electrochemical chloride system 4-65
 The electrochemical bromide system 4-67
IIIID. PO via the chlorohydrin process using t-butyl hypochlorite 4-68
IIIIE. PO via the chlorohydrin process using allyl chloride 4-69
IIIF. Other types of chlorohydrin process 4-70

IV. Propylene oxide by direct oxidation of propylene with O₂ only 4-70
 Direct epoxidation technology of ARCO Chemical 4-70
 Direct epoxidation technology of Bayer 4-71
 Direct epoxidation technology of Dow Chemical 4-71
 Direct epoxidation technology of Olin 4-71
 Direct epoxidation technology of Texaco 4-72
 Direct epoxidation technology of VEB Chemische Werke Buna 4-72
 Direct epoxidation technology of SRI International 4-73
 Direct epoxidation technology of Sumitomo 4-73
 Other direct epoxidation technologies 4-74

V. Other approaches to propylene oxide synthesis 4-75
 Propylene oxide by peracid processes 4-75
 Perpropionic acid from propionic acid and hydrogen peroxide 4-75
 Peracetic acid from acetaldehyde 4-76
 Propylene oxide using stoichiometric metal-oxygenate compounds 4-77
 Propylene oxide via propylene glycol monoacetate by pyrolysis 4-77
 Propylene oxide from propylene glycol by dehydration 4-79
 Propylene oxide from (halogenated) propylene carbonate 4-79
 Propylene oxide via a biochemical approach 4-80
 Cultivation and reactivation of microorganisms 4-80
 Biochemical oxidation of propylene to propylene oxide 4-80

5 Propylene oxide/t-butyl alcohol by hydroperoxidation using t-butyl hydroperoxide 5-1
I. PO/TBA by the Lyondell process using TBHP 5-1
 Process description 5-1
 Section 100—Isobutane oxidation 5-1
 Section 200—Propylene epoxidation 5-2
 Section 300—Product separation 5-2
 Section 400—PO purification 5-2
 Section 500—TBA treatment 5-2
 Section 600—Catalyst recovery and preparation 5-3
 Process discussion 5-15
 Cost estimates 5-16
II. PO/TBA by the Huntsman process using TBHP 5-23
 Process description 5-23
 Section 100—Isobutane oxidation 5-23
 Section 200—Propylene epoxidation 5-24
 Section 300—Product separation 5-24
 Section 400—PO purification 5-24
 Section 500—TBHP/TBA treatment 5-25
 Section 600—Catalyst recovery and preparation 5-25
 Process discussion 5-37
 Cost estimates 5-37
 Comparison of PO/TBA processes 5-44
6 Propylene oxide/styrene by hydroperoxidation using ethylbenzene hydroperoxide

I. PO/SM by the Lyondell process using EBHP
 Process description
 Section 100—Ethylbenzene oxidation
 Section 200—Propylene epoxidation
 Section 300—Product separation
 Section 400—PO purification
 Section 500—Styrene production
 Section 600—Catalyst recovery and preparation
 Process discussion
 Cost estimates

II. PO/SM by the Shell process using EBHP
 Process description
 Section 100—Ethylbenzene oxidation
 Section 200—Propylene epoxidation
 Section 300—Product separation
 Section 400—PO purification
 Section 500—Styrene production
 Process discussion
 Cost estimates

Comparison of PO/SM processes

7 Propylene oxide by hydroperoxidation using cumene hydroperoxide

PO by the Sumitomo process using CHP
 Process description
 Section 100—Cumene oxidation
 Section 200—Propylene epoxidation
 Section 300—Product separation
 Section 400—PO purification
 Section 500—DMBA dehydration-hydrogenation
 Process discussion
 Cost estimates

Comparison of PO by different hydroperoxidation processes

8 Propylene oxide by hydroperoxidation using hydrogen peroxide

I. PO by the BASF-Dow process using hydrogen peroxide
 Process description
 Section 100—Hydrogen peroxide
 Section 200—Propylene epoxidation
 Section 300—Product recovery
 Process discussion
 Cost estimates

II. PO by the Evonik-Uhde process using hydrogen peroxide
 Process description
 Section 100—Hydrogen peroxide
 Section 200—Propylene epoxidation
 Section 300—Product separation
 Section 400—PO purification
 Process discussion
 Cost estimates
Comparison of PO processes using HP and PO/SM using EBHP 8-38

9 Propylene oxide by direct epoxidation 9-1
PO by the direct epoxidation process of AIST-Nippon Shokubai 9-1
 Process description 9-1
 Section 100—Propylene epoxidation 9-1
 Section 200—Product separation 9-2
 Section 300—PO purification 9-2
 Process discussion 9-11
 Cost estimates 9-11
Comparison of processes for PO using direct epoxidation, PO using HP, and PO/SM using EBHP 9-17

10 Propylene oxide by the chlorohydrin process 10-1
I. The chlorohydrin process using lime (conventional) 10-1
 Process description 10-1
 Section 100—Chlorohydrin 10-1
 Section 200—Saponification and PO recovery 10-2
 Section 300—Side product disposal 10-2
 Section 400—Waste treatment 10-2
 Section 500—Milk of lime 10-2
 Process discussion 10-13
 Cost estimates 10-13
II. The chlorohydrin process using cell liquor 10-20
 Process description 10-20
 Section 100—Chlorohydrin 10-21
 Section 200—Saponification and PO recovery 10-21
 Section 300—Side product disposal 10-21
 Section 300—Waste treatment 10-21
 Process discussion 10-31
 Cost estimates 10-31
Comparison of chlorohydrin processes using lime or cell liquor 10-38

Appendix A Design and cost bases A-1
 Design conditions A-1
 Cost bases A-1
 Capital Investment A-1
 Production costs A-2
 Effect of operating level on production costs A-3

Appendix B References by document number B-1
 Open literature B-1
 IHS publications B-7
 Patents B-9

Appendix C Patent summaries by assignee C-1

Appendix D Process flow diagrams D-1

Appendix E iPEP Navigator for propylene oxide E-1
Tables

Table 2.1 Major world producers of propylene oxide (≥200 thousand tpy PO) 2-3
Table 2.2 Summary of PO process technologies 2-8
Table 2.3 Commercial propylene oxide technologies: Total capital investment 2-18
Table 2.4 Commercial propylene oxide technologies: Production costs 2-20
Table 2.5 Definitions of key process indicators 2-25

Table 3.1 Process types for production of propylene oxide 3-1
Table 3.2 US consumption of PO by downstream chemicals production 3-3
Table 3.3 World supply/demand for propylene oxide by region 3-3
Table 3.4 Producers of propylene oxide 3-5
Table 3.5 Recent and planned PO capacity additions 3-8
Table 3.6 Average prices of propylene oxide, t-butyl alcohol, and styrene 3-9

Table 4.1 Impurities in crude PO made by hydroperoxidation 4-10
Table 5.1 PO/TBA by the Lyondell process using TBHP: Design bases and assumptions 5-4
Table 5.2 PO/TBA by the Lyondell process using TBHP: Stream flows 5-6
Table 5.3 PO/TBA by the Lyondell process using TBHP: Summary of waste streams 5-10
Table 5.4 PO/TBA by the Lyondell process using TBHP: Major equipment 5-11
Table 5.5 PO/TBA by the Lyondell process using TBHP: Utilities summary 5-14
Table 5.6 PO/TBA by the Lyondell process using TBHP: Total capital investment 5-18
Table 5.7 PO/TBA by the Lyondell process using TBHP: Capital investment by section 5-19
Table 5.8 PO/TBA by the Lyondell process using TBHP: Production costs 5-21
Table 5.9 PO/TBA by the Huntsman process using TBHP: Design bases and assumptions 5-26
Table 5.10 PO/TBA by the Huntsman process using TBHP: Stream flows 5-28
Table 5.11 PO/TBA by the Huntsman process using TBHP: Summary of waste streams 5-32
Table 5.12 PO/TBA by the Huntsman process using TBHP: Major equipment 5-33
Table 5.13 PO/TBA by the Huntsman process using TBHP: Utilities summary 5-36
Table 5.14 PO/TBA by the Huntsman process using TBHP: Total capital investment 5-39
Table 5.15 PO/TBA by the Huntsman process using TBHP: Capital investment by section 5-40
Table 5.16 PO/TBA by the Huntsman process using TBHP: Production costs 5-42

Table 6.1 PO/SM by the Lyondell process using EBHP: Design bases and assumptions 6-4
Table 6.2 PO/SM by the Lyondell process using EBHP: Stream flows 6-7
Table 6.3 PO/SM by the Lyondell process using EBHP: Summary of waste streams 6-14
Table 6.4 PO/SM by the Lyondell process using EBHP: Major equipment 6-15
Table 6.5 PO/SM by the Lyondell process using EBHP: Utilities summary 6-19
Table 6.6 PO/SM by the Lyondell process using EBHP: Total capital investment 6-23
Table 6.7 PO/SM by the Lyondell process using EBHP: Capital investment by section 6-24
Table 6.8 PO/SM by the Lyondell process using EBHP: Production costs 6-26
Table 6.9 SM/PO by the Shell process using EBHP: Design bases and assumptions 6-31
Table 6.10 SM/PO by the Shell process using EBHP: Stream flows 6-34
Table 6.11 SM/PO by the Shell process using EBHP: Summary of waste streams 6-40
Table 6.12 SM/PO by the Shell process using EBHP: Major equipment 6-41
Table 6.13 SM/PO by the Shell process using EBHP: Utilities summary 6-45
Table 6.14 SM/PO by the Shell process using EBHP: Total capital investment 6-48
Table 6.15 SM/PO by the Shell process using EBHP: Capital investment by section 6-49
Table 6.16 SM/PO by the Shell process using EBHP: Production costs 6-51
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 7.1</td>
<td>PO by the Sumitomo process using CHP: Design bases and assumptions</td>
<td>7-4</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>PO by the Sumitomo process using CHP: Stream flows</td>
<td>7-6</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>PO by the Sumitomo process using CHP: Summary of waste streams</td>
<td>7-12</td>
</tr>
<tr>
<td>Table 7.4</td>
<td>PO by the Sumitomo process using CHP: Major equipment</td>
<td>7-13</td>
</tr>
<tr>
<td>Table 7.5</td>
<td>PO by the Sumitomo process using CHP: Utilities summary</td>
<td>7-16</td>
</tr>
<tr>
<td>Table 7.6</td>
<td>PO by the Sumitomo process using CHP: Total capital investment</td>
<td>7-19</td>
</tr>
<tr>
<td>Table 7.7</td>
<td>PO by the Sumitomo process using CHP: Capital investment by section</td>
<td>7-20</td>
</tr>
<tr>
<td>Table 7.8</td>
<td>PO by the Sumitomo process using CHP: Production costs</td>
<td>7-22</td>
</tr>
<tr>
<td>Table 7.9</td>
<td>Comparison of PO by hydrocarbyl hydroperoxidation processes: Technical aspects and base case process economics</td>
<td>7-26</td>
</tr>
<tr>
<td>Table 8.1</td>
<td>PO by the BASF-Dow process using HP: Design bases and assumptions</td>
<td>8-4</td>
</tr>
<tr>
<td>Table 8.2</td>
<td>PO by the BASF-Dow process using HP: Stream flows</td>
<td>8-5</td>
</tr>
<tr>
<td>Table 8.3</td>
<td>PO by the BASF-Dow process using HP: Summary of waste streams</td>
<td>8-10</td>
</tr>
<tr>
<td>Table 8.4</td>
<td>PO by the BASF-Dow process using HP: Major equipment</td>
<td>8-11</td>
</tr>
<tr>
<td>Table 8.5</td>
<td>PO by the BASF-Dow process using HP: Utilities summary</td>
<td>8-13</td>
</tr>
<tr>
<td>Table 8.6</td>
<td>PO by the BASF-Dow process using HP: Total capital investment</td>
<td>8-16</td>
</tr>
<tr>
<td>Table 8.7</td>
<td>PO by the BASF-Dow process using HP: Capital investment by section</td>
<td>8-17</td>
</tr>
<tr>
<td>Table 8.8</td>
<td>PO by the BASF-Dow process using HP: Production costs</td>
<td>8-18</td>
</tr>
<tr>
<td>Table 8.9</td>
<td>PO by the Evonik-Uhde process using HP: Design bases and assumptions</td>
<td>8-23</td>
</tr>
<tr>
<td>Table 8.10</td>
<td>PO by the Evonik-Uhde process using HP: Stream flows</td>
<td>8-24</td>
</tr>
<tr>
<td>Table 8.11</td>
<td>PO by the Evonik-Uhde process using HP: Summary of waste streams</td>
<td>8-28</td>
</tr>
<tr>
<td>Table 8.12</td>
<td>PO by the Evonik-Uhde process using HP: Major equipment</td>
<td>8-29</td>
</tr>
<tr>
<td>Table 8.13</td>
<td>PO by the Evonik-Uhde process using HP: Utilities summary</td>
<td>8-31</td>
</tr>
<tr>
<td>Table 8.14</td>
<td>PO by the Evonik-Uhde process using HP: Total capital investment</td>
<td>8-33</td>
</tr>
<tr>
<td>Table 8.15</td>
<td>PO by the Evonik-Uhde process using HP: Capital investment by section</td>
<td>8-34</td>
</tr>
<tr>
<td>Table 8.16</td>
<td>PO by the Evonik-Uhde process using HP: Production costs</td>
<td>8-36</td>
</tr>
<tr>
<td>Table 8.17</td>
<td>Comparison of PO processes using HP and EBHP: Technical aspects and base case process economics</td>
<td>8-40</td>
</tr>
<tr>
<td>Table 9.1</td>
<td>PO by the AIST-Nippon Shokubai direct epoxidation process: Design bases and assumptions</td>
<td>9-3</td>
</tr>
<tr>
<td>Table 9.2</td>
<td>PO by the AIST-Nippon Shokubai direct epoxidation process: Stream flows</td>
<td>9-4</td>
</tr>
<tr>
<td>Table 9.3</td>
<td>PO by the AIST-Nippon Shokubai direct epoxidation process: Summary of waste streams</td>
<td>9-8</td>
</tr>
<tr>
<td>Table 9.4</td>
<td>PO by the direct epoxidation process of AIST-Nippon Shokubai: Major equipment</td>
<td>9-9</td>
</tr>
<tr>
<td>Table 9.5</td>
<td>PO by the by the direct epoxidation process of AIST-Nippon Shokubai: Utilities summary</td>
<td>9-11</td>
</tr>
<tr>
<td>Table 9.6</td>
<td>PO by the direct epoxidation of AIST-Nippon Shokubai: Total capital investment</td>
<td>9-13</td>
</tr>
<tr>
<td>Table 9.7</td>
<td>PO by the direct epoxidation of AIST-Nippon Shokubai: Capital investment by section</td>
<td>9-14</td>
</tr>
<tr>
<td>Table 9.8</td>
<td>PO by the direct epoxidation of AIST-Nippon Shokubai: Production costs</td>
<td>9-15</td>
</tr>
<tr>
<td>Table 9.9</td>
<td>Comparison of PO processes using direct epoxidation, HP, and EBHP: Technical aspects and base case process economics</td>
<td>9-18</td>
</tr>
<tr>
<td>Table 10.1</td>
<td>PO by the chlorohydrin process using lime: Design bases and assumptions</td>
<td>10-3</td>
</tr>
<tr>
<td>Table 10.2</td>
<td>PO by the chlorohydrin process using lime: Stream flows</td>
<td>10-4</td>
</tr>
<tr>
<td>Table 10.3</td>
<td>PO by the chlorohydrin process using lime: Summary of waste streams</td>
<td>10-9</td>
</tr>
<tr>
<td>Table 10.4</td>
<td>PO by the chlorohydrin process using lime: Major equipment</td>
<td>10-10</td>
</tr>
<tr>
<td>Table 10.5</td>
<td>PO by the chlorohydrin process using lime: Utilities summary</td>
<td>10-12</td>
</tr>
<tr>
<td>Table 10.6</td>
<td>PO by the chlorohydrin process using lime: Total capital investment</td>
<td>10-15</td>
</tr>
<tr>
<td>Table 10.7</td>
<td>PO by the chlorohydrin process using lime: Capital investment by section</td>
<td>10-16</td>
</tr>
<tr>
<td>Table 10.8</td>
<td>PO by the chlorohydrin process using lime: Production costs</td>
<td>10-18</td>
</tr>
</tbody>
</table>
Table 10.9 PO by the chlorohydrin process using cell liquor: Design bases and assumptions 10-22
Table 10.10 PO by the chlorohydrin process using cell liquor: Stream flows 10-23
Table 10.11 PO by the chlorohydrin process using cell liquor: Summary of waste streams 10-28
Table 10.12 PO by the chlorohydrin process using cell liquor: Major equipment 10-29
Table 10.13 PO by the chlorohydrin process using cell liquor: Utilities summary 10-31
Table 10.14 PO by the chlorohydrin process using cell liquor: Total capital investment 10-33
Table 10.15 PO by the chlorohydrin process using cell liquor: Capital investment by section 10-34
Table 10.16 PO by the chlorohydrin process using cell liquor: Production costs 10-36
Table 10.17 Comparison of commercial chlorohydrin processes for PO production 10-39

Figures

Figure 2.1 Propylene oxide capacity by process type 2-2
Figure 2.2 Block flow diagrams of processes for PO production 2-4
Figure 2.3 Factors of production for propylene oxide processes 2-24
Figure 2.4 Key process indicators 2-27
Figure 2.5 CO2 footprint breakdown 2-28
Figure 3.1 World capacity for PO by process 3-2
Figure 4.1 Conversion vs. selectivity profiles observed in isobutane oxidation 4-5
Figure 4.2 Block flow diagram of Lyondell TBHP process 4-12
Figure 4.3 Block flow diagram of Huntsman TBHP process 4-13
Figure 4.4 Block flow diagram of Lyondell EBHP process 4-21
Figure 4.5 Block flow diagram of Shell EBHP process 4-21
Figure 4.6 Chemical cycle in the Sumitomo CHP process for PO production 4-26
Figure 4.7 Block flow diagram of Sumitomo CHP process 4-27
Figure 4.8 Chemistry of the anthraquinone process 4-29
Figure 4.9 Block flow diagram of BASF-Dow HPPO process 4-40
Figure 4.10 Block flow diagram of Evonik-Uhde HPPO process 4-40
Figure 4.11 Slurry reactors with indirect heat exchange 4-45
Figure 4.12 Effect on PO yield of Pt/Pd catalyst reduction temperature and atmosphere 4-48
Figure 4.13 Effect on PO yield of Pt loading in Pt/Pd catalyst 4-49
Figure 4.14 Effect on PO yield of alkali loading in Pt/Pd catalyst 4-50
Figure 4.15 Block flow diagram of AIST-Nippon Shokubai O2/H2 process 4-54
Figure 4.16 Block flow diagram of the conventional chlorohydrin process using lime for saponification 4-55
Figure 4.17 Block flow diagram of the chlorohydrin process using chlorine plant cell liquor for saponification 4-56
Figure 4.18 Reactor configuration suppressing formation of side products during chlorohydration 4-60
Figure 5.1 PO/TBA by the LyondellBasell process using TBHP: Process flow diagram D-1
Figure 5.2 Production cost of PO by the Lyondell TBHP process as a function of plant operating level and plant capacity 5-23
Figure 5.3 PO/TBA by the Huntsman process using TBHP: Process flow diagram D-3
Figure 5.4 Production cost of PO by the Huntsman TBHP process as a function of plant operating level and plant capacity 5-44
Figure 6.1 PO/SM by the LyondellBasell process using EBHP: Process flow diagram D-5
Figure 6.2 Production cost of PO by the Lyondell EBHP process as a function of plant operating level and plant capacity 6-28
Figure 6.3 PO/SM by the Shell process using EBHP: Process flow diagram D-7
Figure 6.4 Production cost of PO by the Shell EBHP process as a function of plant operating level and plant capacity 6-53
Figure 7.1 PO by the Sumitomo process using CHP: Process flow diagram D-9
Figure 7.2 Production cost of PO by the Sumitomo CHP process as a function of plant operating level and plant capacity 7-24
Figure 8.1 PO by the BASF-Dow process: Process flow diagram D-11
Figure 8.2 Production cost of PO by the BASF-Dow HP process as a function of plant operating level and plant capacity 8-20
Figure 8.3 PO by the Evonik-Uhde process using HP: Process flow diagram D-12
Figure 8.4 Production cost of PO by the Evonik-Uhde HP process as a function of plant operating level and plant capacity 8-38
Figure 9.1 PO by the direct epoxidation of AIST-Nippon Shokubai: Process flow diagram D-13
Figure 9.2 Production cost of PO by the AIST-Nippon Shokubai direct oxidation process as a function of plant operating level and plant capacity 9-17
Figure 10.1 PO by the chlorohydrin process using lime: Process flow diagram D-14
Figure 10.2 Production cost of PO by the chlorohydrin process using lime as a function of plant operating level and plant capacity 10-20
Figure 10.3 PO by the chlorohydrin process using cell liquor: Process flow diagram D-16
Figure 10.4 Production cost of PO by the chlorohydrin process using cell liquor as a function of plant operating level and plant capacity 10-38